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Abstract— Although most game theory models assume that
payoff matrices are provided as input, getting payoff matrices
in strategic games (e.g., corporate negotiations and counter-
terrorism operations) has proven difficult. To tackle this chal-
lenge, we propose a payoff inference engine (PIE) that finds
payoffs assuming that players in a game follow a myopic best
response or a regret minimization heuristic. This assumption
yields a set of constraints (possibly nonlinear) on the payoffs
with a multiplicity of solutions. PIE finds payoffs by con-
sidering solutions of these constraints and their variants via
three heuristics. First, we approximately compute a centroid
of the resulting polytope of the constraints. Second, we use a
soft constraint approach that allows violation of constraints by
penalizing violations in the objective function. Third, we develop
a novel approach to payoff inference based on support vector
machines (SVMs). Unlike past work on payoff inference, PIE
has the following advantages. PIE supports reasoning about
multiplayer games, not just one or two players, it can use short
histories, not long ones which may not be available in many
real-world situations, it does not require all players to be fully
rational, and it is one to two orders of magnitude more scalable
than past work. We run experiments on a synthetic data set where
we generate payoff functions for the players and see how well our
algorithms can learn them, a real-world coarse-grained counter-
terrorism data set about a set of different terrorist groups, and a
real-world fine-grained data set about a specific terrorist group.
As the ground truth about payoffs for the terrorist groups cannot
be tested directly, we test PIE by using the payoffs to make
predictions about the actions of the groups and corresponding
governments (even though this is not the purpose of this article).
We show that compared with recent work on payoff inference,
PIE has both higher accuracy and much shorter runtime.

Index Terms— Counter terrorism, game theory, payoff
inference.

I. INTRODUCTION

GAME theory is a classic and powerful tool for modeling
strategic behavior of a system of multiple agents who
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interact with each other. Almost all works in game theory
start with a payoff matrix. In his pioneering study of conflict,
Schelling [1] starts out with a payoff matrix for virtually every
scenario. While getting a payoff matrix for a game is critical
to modeling and understanding the behaviors of the involved
agents, it unfortunately poses an enormous challenge in many
real-world strategic games where such knowledge does not
exist.

In this article, we address the payoff inference problem
in a game of interacting players with our counter-terrorism
application. Because counter terrorism is adversarial, we target
noncooperative scenarios in order to answer the following
question: Given a body of historical data about the interac-
tions of a set of noncooperative players, is there a way to
learn a payoff matrix? The approach in this article is partly
motivated by our ongoing counter-terrorism research involving
the terrorist group Lashkar-e-Taiba (LeT) (responsible for the
2008 Mumbai attacks)—given the history of interactions of the
governments of Pakistan and India and LeT, we wish to under-
stand their payoff [2], [3]. To answer these questions, we need
a realistic game theoretic model that is able to characterize
real-world game scenarios (e.g., in counter terrorism) while
being robust to potential deviations from the game models.
To this end, we consider the following properties in our
model.

1) Best Response: Given the history of past events (i.e.,
choices of actions), in each time period, players choose
an action that is an approximate best response to the
history (subject to the bounded rationality property as
described next).

2) Bounded Rationality: In real-world games, such as
our counter-terrorism situations, decision makers are
not likely to be fully rational but boundedly rational,
i.e., players take actions whose payoffs are within � per-
cent of the action with best response payoff. Therefore,
we assume bounded rationality, not full rationality.

3) Time Discounting: Intuitively, players are more likely to
be influenced by “recent” history as opposed to events
from a distant past. In order to model this, we developed
a notion of time-discounted regret.

4) No Correlated Equilibria, Short Histories: A correlated
equilibrium is a status where no player wants to deviate
from the recommended strategy from a public signal
(assuming the others do not deviate). When long his-
tories are available and some extra assumptions are
made [4], game play can converge to a correlated equi-
librium even without a signaling mechanism. However,
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many real-world applications have short histories for
which convergence cannot be assumed. As a result,
we do not assume correlated equilibria [4] or the exis-
tence of a signaling mechanism [5].

There has been extensive prior work on applying game-
theoretic models to counter terrorism and more generally,
security problems [3], [6]–[13]. These works usually assume
that the payoff matrices of the players are known a priori,
which is not the case in our counter-terrorism domain. The
payoff inference problem has been studied in economics
for various markets [14]–[17]. However, their focus is on
modeling a particular market and then to use the domain-
specific model for model fitting and regression. Therefore,
their methods cannot be applied to our problem. Though there
are several existing works on inverse reinforcement learning
(IRL) which study the payoff inference problem, we will show
the following.

1) Most of these works focus on single agent [18]–[20].
2) Some of these works focus on multiple agents in a

cooperative setting [21], [22].
3) The works on multiagent noncooperative settings

[23]–[26] generally [including those in 1) and 2)] target
payoff inference problems defined on a Markov decision
process (MDP), which is an overcomplication of our
problem.

For payoff inference on games with multiple players, we show
that past works lack at least one of these properties. One work
that is closely related to our problem is [27]. However, we will
show that the model formulated in [27] is computationally
inefficient, as solving the model involves convex optimization.
Moreover, another distinction of our model from existing
works is that we take into consideration all the properties
mentioned above (i.e., best response, time discounting, and
no correlated equilibria), but existing works lack at least one
of the properties in their game theory-based payoff inference
model.

We provide two different formulations to model the payoff
inference problem. The first formulation is built on top of
the concept of regret in repeated decision making problems,
where we define a set of constraints whose variables represent
the tabular representation of payoffs for each player under
each joint action. Our constraints informally state that at each
time point t in the past, each player i chose to perform the
action for which he had the maximal expected time-discounted
regret prior to time t . In the second model, we interpret these
constraints as a myopic best response to the state of the world
(i.e., a history of actions for all the players) with a (possibly)
nonlinear function form representation of the payoff function.
The two models lead to a set of constraints defined on the
payoff functions.

To solve the above problems, we propose three approaches:
centroid-based solution (CBS) and soft constraints approach
(SCA) are devised for the first model, while SVM-based
method (SVMM) is designed for the second model.

1) CBS: In CBS, the (approximate) centroid of the con-
straint polytope is picked as the solution.

2) SCA: In the SCA, we allow the rationality constraints to
be violated but penalize such violations in the objective
function.

3) SVMM: In the SVMM, we propose a heuristic method
to map the payoff inference problem onto a support
vector machine (SVM) [28] and build a separator that
captures the payoff function we wish to learn.

We implemented CBS, SCA, and SVMM, as well as the
inverse correlation equilibrium learning (ICEL) algorithm [27]
on both synthetic data and two real-world data sets. We com-
pared all four algorithms with respect to solution quality and
run time. On synthetic data where we knew the ground truth
(because we generated player behavior using known payoff
functions), we showed that the SVMM outperforms both CBS
and SCA with respect to both solution quality and run time.
We also compared CBS, SCA, and SVMM on two real-world
data sets: 1) the Minorities at Risk Organizational Behavior
(MAROB) data set [29] that contains data on terrorist group
behaviors and related government actions and 2) a much more
fine-grained data set [2] about the behavior of the terrorist
group LeT.1 Again, the SVMM outperformed CBS and SCA.
We then ran experiments comparing the SVMM with ICEL.
When we compare the ability of the SVMM with that of
ICEL to predict true behaviors from learned payoffs on the
MAROB data, SVMM’s ability to predict behavior from the
learned payoffs was much better than ICEL (median Spearman
correlation coefficient of 0.7 for the SVMMcompared with just
0.114 for ICEL).

II. RELATED WORK

A major driver for this article is counter-terrorism applica-
tions. The development of game-theoretic methods to analyze
terrorist behavior and organization has been pioneered in [6]
and [7] and subsequently adopted by others [8]–[13]. However,
as described earlier, these approaches usually assume that the
payoff matrices are known in advance by the decision makers,
which might not be the case in many real-world problems
such as the counter-terrorism applications motivating this
article.

Economists have studied payoff inference problems for
various markets [14]–[17]. However, their focus is on
modeling a particular market and then to use various model
fitting and regression methods to learn the best parameters.
For instance, [16] studies the effect of land use regulations
on the midscale hotel market. In our problem, the decision
making process is in an interactive environment [30], [31]
with multiple agents (i.e., governments and terrorist groups) as
opposed to the single agent scenario in these works. Therefore,
these lines of research cannot be directly applied to our
problem.

1As no ground truth exists about payoffs for real-world players in the
MAROB and LeT data sets, we learned player payoffs from a training data
set and then validated them on a separate validation data set by making
predictions based on learned payoffs. We emphasize the fact that this article
is not about prediction, but about learning payoffs in order to understand
group behavior. The goal is to understand the payoff structure for different
players for different strategies, so diplomats and counter-terrorism agencies
can shape policies toward the terrorist groups. We use predictions solely to
validate learned payoffs.
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IRL [18] learns payoffs of a single agent operating in
a given (usually Markovian) environment. Reference [18]
addresses the problem of learning a reward function by observ-
ing the behavior of MDPs. However, they and a series of
subsequent works [19], [20] assume a single rational agent
in a given environment. Some recent works have focused
on multiagent IRL (MIRL). In contrast to the scenario we
consider in which players are noncooperative, [21] and [22]
study the problem of learning player payoffs in the presence of
a centralized coordinator. While several other works [23]–[26]
study the noncooperative setting, a major difference between
the problems addressed in these works is that they focus on
noncooperative games defined on a MDP, while the problem
targeted in this article is a one-shot decision making problem
(i.e., the decision at the current time step does not affect the
decisions at future time steps). Therefore, the approaches to
MIRL are distinct from this article. Perhaps, the prior work
that is closest to our problem setting is by Waugh et al. [27]
who proposed an approach to predict player behavior when
no payoff matrix is available. A convex optimization formu-
lation finds a maximum entropy solution to find the predicted
distribution over joint actions. Finally, payoffs are computed
by using the dual of the above optimization convex problem.
However, this approach suffers from the computational com-
plexity brought by the convex program formulation.

The assumption of equilibrium is common to most work on
MIRL and other payoff learning methods. However, decision
theory strongly suggests that human players do not follow
equilibrium strategies, even when the equilibrium is unique
(which is also rare in real-world problems) [1]. However,
decision theory does highlight the importance of recency [32]
and regret in human decision making. Anticipated regret
is considered an important determinant of choice behavior
[33]–[35]. These aspects form the basis for PIE’s time-
discounted regret minimization and myopic best response with
exponentially decaying state. Thus, PIE differs from existing
work on payoff inference in that we assume myopic rationality
and not global rationality (equilibrium). We also assume
simple game play dynamics inspired by relevant work from
decision theory. In addition, we develop a fast and practical
data analytic approach compared with the more theoretical
approach taken by most machine learning articles. We show
this with experiments on two real-world data sets and show
superior performance compared to Waugh et al. [27] who only
study a very small, toy example.

III. PAYOFF INFERENCE MODEL

In this section, we first introduce the preliminaries of the
game model, followed by two different formulations of the
payoff inference models. The first model is based on the idea
of “regret minimization” with a tabular representation of the
payoff matrices. The second model, which is motivated by
our counter-terrorism application on LeT, represents the payoff
matrices in a function approximation form with respect to a
“time-weighted history.”

A. Preliminaries

Let [N] = {1, . . . , N} be a set of players. We assume that
each player i has an associated set Ai of actions that it can

take. Let A = A1 × · · · × AN denote the set of all possible
joint actions. Given a joint action a ∈ A, ai is the action of
player i and a−i is the joint action of all other players. Let ui

be an unknown payoff function: ui : A → [0, 1]. ui (a) is the
payoff of joint action a for player i . Let U = {u1, . . . , uN }
be the set of all (as yet unknown) payoff functions, where ui

is the payoff function for player i . Let [T ] = {1, . . . , T } be a
set of past time points.

Let m = ∑
i∈[n] |Ai | be the total number of actions for

all players in the game. We encode a joint action as an m-
dimensional binary vector. Each action for a player i is indexed
from

∑
j∈{1...,i−1} |A j | + 1 to

∑
j∈{1...i} |A j | in a fixed but

arbitrary order. In other words, the first |A1| entries in the
vector describe the actions for the first player, the next |A2|
entries describe the actions for the second player, and so forth.
Let v be an encoding for a ∈ A. If, in the joint action
represented by a, player i plays action ai ∈ Ai at time t ,
then, and only then is v[ai ] = 1, otherwise v[ai ] = 0.

Example 1: Suppose we have two players 1 and 2 and
suppose A1 = {a, b, c} and A2 = {a, e} are the actions
they can perform. Then, the dimensionality of a joint action
is 5 and an example of the vector representation of a joint
action is

The first row is the player’s ID and the second row is the
action name. Here, the 5-D vector (1,0,0,0,1) tells us that in
this joint action, player 1 performed action a and player 2
performed action e.

A history is a sequence H τ = 〈a1, . . . , aτ 〉, where at is the
vector of joint actions taken at time t ∈ [T ]. We represent the
history of a game as a matrix, H , where H [t, a] = 1 if and
only if player i plays action a ∈ Ai at time t . Thus, Ht , the tth
row of the history matrix represents the joint action taken by
all players at time t . Likewise, the i ’th column of H tells us
that actions taken by player i at each time point.

Example 2: Suppose we have two players [N] = {1, 2};
player 1 is a terror group and player 2 is the government.
Assume that the players’ actions are pe_g (“political engage-
ment with the government”) for player 1 and pe_tg (“political
engagement with the terror group”) for player 2. Each of
these variables has three possible levels of intensity (low,
medium, and high). Therefore, player 1 has three actions,
pe_g(l),pe_g(m), and pe_g(h), corresponding to the three
levels of intensity of this action, and similarly, player 2
has three actions pe_tg(l),pe_tg(m), and pe_tg(h). Let
indices of the actions pe_g(l),pe_g(m), and pe_g(h) be
1–3, respectively, for player 1, and 4–6, respectively, for
player 2. Suppose we have three years ([T ] = {1, 2, 3}) of
history in the following.
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Then, the history matrix H is given by
⎛
⎝

1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0

⎞
⎠ .

B. Regret-Based Payoff Inference

In this section, we define the concept of time-discounted
regret. Classical regret is defined with respect to a class �
of modification functions. Each modification function f ∈
� is a mapping f : A → A. Intuitively, a modification
function suggests an alternative choice f (a) for an action
a. Instead of taking action a, the player takes action f (a).
As there are many ways in which a player could modify his
choice, we consider a set � of modification functions. In the
context of our running counter-terrorism example, the different
modification functions might correspond to all feasible actions
that could replace a given action a. The regret for a player i
is defined as

Ri,�(t) = max
f ∈�

t−1∑

t̂=1

ui
(

f
(
at̂

i

)
, at̂

−i

) − ui (a
t̂ )

where ui ( f (at̂
i ), at̂

−i ) − ui (at̂) is the difference in utility for

player i , had he elected to take action f (at̂
i ) instead of

whatever action he took at time t in the past. The summation∑t−1
t̂=1

ui ( f (at̂
i ), at̂−i ) − ui (at̂ ) reflects the total regret that

player i had with respect to his past actions, had he chosen
to use modification function f instead of whatever method
he used to select his past actions. Had player i used the
modification function f ∈ � that maximizes this summation,
then he would have gotten the maximal possible benefit, and
the fact that he (maybe) did not use it what leads to this regret.

When determining what action to take, players in the real
world are often more influenced by recent actions than by
actions in the distant past. Our notion of time-discounted regret
takes this into account by allowing a player to discount the
past at a rate α subject to 0 < α ≤ 1. After each time point,
the “importance” of a past event is reduced by a factor of α.
The time-discounted regret is defined as follows:

T DRi,�(t) = max
f ∈�

∑t−1
t̂=1

αt−1−t̂
(
ui

(
f
(
at̂

i

)
, at̂−i

) − ui (at̂)
)

∑t−1
t̂=1

αt−1−t̂
.

(1)

Because of the α parameter in the definition of T DR, for us,
a history is a timed-stamped collection of past joint actions.
This is very different from [27] which only uses the history to
extract the distribution of joint actions and considers it to be
a collection (without timestamps) of past joint actions. When
α = 1, the definitions of regret and time-discounted regret
coincide.

Suppose �c is the set of all functions from A to A that
are constant functions, i.e., if f is in �c, there must exist an
action a′ ∈ A such that for all a ∈ A, f (a) = a′. The time-
discounted external regret with respect to �c is then simply
given by

TDERi,�c (t) = max
â∈A

∑t−1
t̂=1

αt−1−t̂
(
ui

(
â, at̂−i

) − ui (at̂)
)

∑t−1
t̂=1 αt−1−t̂

.

In other words, T DE Ri,�c only considers constant functions
when computing time-discounted regret. We define the time-
discounted external regret with respect to action â as

TDERi (â, t) =
∑t−1

t̂=1
αt−1−t̂

(
ui

(
â, at̂

−i

) − ui (at̂)
)

∑t−1
t̂=1

αt−1−t̂
. (2)

Intuitively, T DE Ri (â, t) is the regret for player i due to the
fact that she/he did not use the strategy to always play the
action â in the past. We assume that for a rational player,
the greater the regret with respect to an action â in the past,
the more likely it is that the player will play the action â in
the future.2

Example 3: Let us reconsider example 2 with α = 0.9. The
time-discounted external regret for player 1 with respect to
action h in the year 2013 (t = 4) is T DE R1(h, 4), shown at
the bottom of this page.

Observe that the weights 0.81, 0.9, and 1.0 are the weights
for years 2010, 2011, and 2012, respectively.

A player is rational if, for each time t , the player chooses
the action that caused the maximum time-discounted external
regret in the past. Thus, our rationality constraints require that
∀t ∈ [T ]\{1}, ∀i ∈ [N], ∀â ∈ A\{at

i }, the following condition
holds3:

TDERi (â, t) ≤ TDERi
(
at

i , t
)

(3)

or, equivalently

t−1∑

t̂=1

αt−1−t̂(ui
(
â, at̂−i

) − ui
(
at

i , at̂−i

)) ≤ 0. (4)

Since our goal is to infer the payoff function of players (based
on regret maximization) instead of computing an equilibrium,
we do not have any constraint at t = 1, and the action at
t = 1 is from the ground truth of the data set. Bounded
Rationality: As players in the real world are rarely 100%
rational, we introduce a parameter � ∈ [0, 1] that captures the
degree of rationality. The closer � is to 1, the more rational
the player is, while the closer � is to 0, the more irrational the
player is. We replace (3) (which assumes complete rationality)

2In simple terms, if the player had great regret about not doing something
in the past, especially the recent past, then he is more likely to do it in the
future, especially in the near future.

3Note that since we set a constraint for each player, this means that
each player is maximizing its regret knowing that the other players are
simultaneously maximizing their regret.

T DE R1(h, 4) = 0.81(u1(h, m) − u1(l, m)) + 0.9(u1(h, l) − u1(m, l)) + (u1(h, m) − u1(h, m))

0.81 + 0.9 + 1.0
.
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with the equation in the following, which allows weaker
notions of rationality:

� · TDERi (â, t) ≤ TDERi
(
at

i , t
)

or equivalently

t−1∑

t̂=1

αt−1−t̂(� · ui
(
â, at̂

−i

) − ui
(
at

i , at̂
−i

)) ≤ 0. (5)

As � and α are constants, this equation is linear. Each ui (−)
term is a variable in this constraint. Let LC be the set of all
linear constraints generated by (5). We demonstrate them in
the next example.

Example 4: By considering only the last two years of the
history in Example 2, we observe that H T is

If α = 0.9 and � = 0.8, the rationality constraints are

(0.8 u1(l, l) − u1(h, l)) ≤ 0(0.8 u1(m, l) − u1(h, l)) ≤ 0

(0.8 u2(m, l) − u2(m, m)) ≤ 0(0.8 u2(m, h) − u2(m, m)) ≤ 0.

The result below states that LC is polynomial in size.
Proposition 1: The number of variables occurring in LC is

polynomial in the number of players N , the number of actions
M , and in the size of the history T .

One problem with LC is that it may have multiple solutions,
some of which may be trivial. An example of a trivial solution
is when the utility function returns the same value for each
joint action for each player. For instance, the maximal entropy
solution of LC (the entropy function is applied to all variables
of LC) assigns the same utility to all combinations of players
and joint actions.

Proposition 2: Suppose U = {u1, . . . , uN } is a maximal
entropy solution for LC . Then, for all joint actions a, a′ and
all players i, j , ui (a) = u j (a′).
The proofs of the above two propositions are in The Appendix.
Hence, given the assumptions in this article, maximal entropy
is not a very effective way of choosing a solution.

C. Function Form Payoff Matrix With Time-Weighted History

PIE was motivated by our ongoing counter-terrorism
research. We have applied PIE to a multiplayer game involv-
ing the terrorist group LeT (responsible for the 2008 Mumbai
attacks) and the governments of Pakistan and India as players.
In such scenarios, a time-weighted history of players’ actions
is a representation of state of the world (which is a history of
players’ actions) at the time the player decides to take a new
action. Time-weighted history captures the idea that recent
actions may be more relevant than older ones.

The payoffs in (5) are in tabular forms. Suppose we
assume that a payoff function for player i at time t is any

(linear or nonlinear) function πi : R
m+1 	→ R of the time-

weighted history at time t . A time-weighed history, wt , at time
t is an m-dimensional vector defined as follows:

wt =
∑

i∈{1...t} αt−i Hi∑
i∈{1...t} αt−i

.

That is, πi (a, wt ) takes an action a and a time weighted history
wt as input and outputs a payoff value, specifying the payoff
to player i of playing a at time t with respect to wt .

We assume that a player chooses an action at time t that
has highest payoff with respect to the state of the world at
time t − 1. Let a be the action of player i at time t , and thus

πi (a, wt ) ≥ πi (a
′, wt ) ∀a′ ∈ Ai , i ∈ [N], t ∈ [T ]. (6)

One such constraint needs to be written for each player i and
each time t . Note that these constraints may be nonlinear. It
is easy to see that (6) generalizes (5). Note that this system
of inequalities is feasible as assigning identical payoffs for all
actions always satisfies (6). However, this solution is trivial.
Hence, it is important to choose a “robust” solution to the
above system. For real-world problems, we require that the
selected solution satisfies the following properties.

1) The family of functions to which our payoff functions
πi belong should not have arbitrary complexity, i.e., our
hypothesis space should not allow arbitrary payoff func-
tions to avoid overfitting. On the other hand, we should
allow somewhat complicated nonlinear payoff functions
to avoid oversimplification.

2) While it is reasonable to assume that players react to
game history and use actions which would generate high
payoffs, we cannot assume that each and every player
always adheres to this heuristic at all times. Therefore,
our algorithm must admit the possibility that some points
in the history may violate (6). However, (6) should hold
for most of the game history.

3) Last but not least, there must be a tractable algorithm
to select a solution of these constraints so that PIE
can apply to real-world strategic games involving many
players and dozens of actions. While the current best
approach [27] in the literature has been applied to games
of up to six players with three actions for each player,
they do not discuss the runtime of their approach. Our
experiments will show that our best approach is one to
two orders of magnitude faster.

IV. SOLUTIONS

In this section, we present three approaches to select a
solution of the system of constraints defined in Section III.
Note that the CBS and SCA approaches are designed for the
LC constraints in (5), while the SVMM is devised for the
constraints in (6).

A. CBS

The CBS uses LC [see (5)]. The classical way to choose one
solution of LC is to choose the maximum entropy solution.
However, as proved earlier in Proposition 2, this is not useful
as the maximum entropy solution assigns the same utility
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to all combinations of players and joint actions. In order
to avoid this, we choose a centroid-based approach. The
centroid solution of LC is the mean position of all points
satisfying LC . Unfortunately, computing the centroid of a
convex region is computationally very complex, and even
approximating it is #P-hard [36]. We, therefore, approximate
the centroid by using hit-and-run (HAR) sampling [37]. In
HAR sampling, we start with a randomly selected solution
of the constraints (point in the polytope). We then randomly
identify a direction and distance and head in that direction
for the selected distance from the last sampled point. If we
are still within the polytope, this becomes our next sampled
point. If the new point is outside the polytope, we regenerate
a distance and direction until a valid point within the polytope
is found. This process is iterated until the desired number
of sample points is generated. HAR sampling allows us to
sample points from a convex polytope uniformly at random in
time polynomial in the number of dimensions (the number of
variables of LC). We approximate the centroid by taking the
componentwise mean of the sampled payoffs.

Proposition 3: The centroid approximation described ear-
lier is a solution of LC .

This proposition follows as the centroid approximation is a
convex combination of the solutions of LC .

B. SCA

In the SCA, we again use only LC [see (5)] and allow the
rationality constraints to be violated by introducing a slack
variable in each constraint in LC . These slack variables are
denoted si,a,t in the revised linear program (RLP) given in the
following. We then find a solution of RLC that minimizes the
sum of the slack variables which, in a sense, minimizes the
amount of violation of the constraint. The RLP is shown in
the following:

min
s,u

∑
i,a,t

si,a,t

s.t :
t−1∑

t̂=1

αt−1−t̂(�ui
(
a, at̂

−i

) − ui
(
at

i , at̂
−i

) + si,a,t
)

≤ 0 ∀i ∈ [N], a ∈ A, t ∈ [T ]. (7)

The slack variables in (7) are inside the parentheses to nor-
malize for the history length and time decay of payoffs.

C. Payoff Inference Using SVMM

In this section, we present a novel approach that uses
SVMs to find a “good” candidate solution to the system
of inequalities given in (6). Here, we use a set C O N S
of constraints, which are generated by (6). Each constraint
generated by (6) has a left-hand side and a right-hand side.
We encode the left- and right-hand sides of the inequalities
in (6) as points in a space. If a point encodes the right-hand
side of an inequality, it is assigned a label 1; otherwise, it is
assigned a label 0. We then run the classification algorithm.
The decision function for the learned classifier is the desired
payoff function. We now describe this method in more detail.

Encoding Points in Game History: Let the number of actions
of player i be ni = |Ai |. Let a be an action of player i , whose
index is equal to

∑
j∈{1...i−1} |A j |+k. Consider an m+1 tuple

(a, h), where a ∈ Ai and h is an m-dimensional point. Let
V : R

m+1 	→ R
(m+1)ni be a map that takes this m +1’th tuple

as input and outputs an (m + 1) ∗ ni -dimensional vector. Map
V is defined as follows:

V (a, h)[(k − 1) ∗ (m + 1) + 1] = 1

V (a, h)[(k − 1) ∗ (m + 1) + 1 + j ] = h[ j ] ∀ j ∈ {1 . . . m}.
All other entries of V (a, h) are 0. Suppose player i plays

action a at time t . Then, V (a, wt,i , wt−1,−i) is labeled 1. For
all actions a′ �= a, V (a′, wt,i , wt−1,−i ) are labeled 0. The
following example shows how this works.

Example 5: Consider a three-player game with players
1–3 with two actions (namely, actions 1 and 2) for each
player. A point in the history of the game is represented by a
6-D binary vector, e.g., the vector (1,0,0,1,1,0) represents the
fact that players 1–3 played actions 1, 2, and 1, respectively.
Let the current state of the world be given by the vector
wt = (w1, w2, w3, w4, w5, w6). Assume that at any time,
player 1 plays a myopic best response to this state of the
world. For simplicity, let payoffs be a linear function of
the state of the world. The payoff for playing action 1 by
player 1 is p1 = a1 + ∑

i∈{1..6} a1iwi . Similarly for action
2, p2 = a2 + ∑

i∈{1..6} a2iwi . Thus, the payoff function can
be represented as a 14-D vector p = (p1, p2). Furthermore,
assume that player 1 actually chooses action 1 as the best
response, then

p1 >= p2. (8)

We now encode the RHS as V (1, wt ) = (1, w1, w2, w3,
w4, w5, w6, 0, 0, 0, 0, 0, 0, 0) and the LHS as V (2, wt ) =
(0, 0, 0, 0, 0, 0, 0, 1, w1, w2, w3, w4, w5, w6). If we use SVM
to learn a separating hyperplane W for points V (1, wt ) and
V (2, wt ) such that V (1, wt ) is on the positive side and
V (2, wt ) is on the negative side, then we have

W T V (1, wt ) > 0, W T V (2, wt ) < 0. (9)

Thus, we have W T V (1, s) > W T V (2, s) and W is a 14-D
vector representing a feasible solution of (9).

Going back to the general case, let E be the function that
takes a given game history as input and outputs a payoff value,
the labeling, and encoding of points as defined earlier. We now
describe the relationship between the SVM classifier applied
to points given by mapping V and the system of inequalities
given by (6) with the help of the following two propositions—
proofs are in The Appendix.

Proposition 4: The system of inequalities given in (6) is
feasible for a game history H , i.e., we can find payoff
functions such that all the inequalities are satisfied if the SVM
algorithm can find a separator for encoding E(H ).

Proposition 5: If the SVM algorithm can find a separator
that misclassifies n1 points with label 1 and n0 points with
label 0, then we can find payoff functions such that at most
n0 + n1 of the inequalities in (6) are violated.
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V. IMPLEMENTATION AND EXPERIMENTS

We implemented CBS, SCA, and SVMM, as well as the
ICEL algorithm [27]. Section V uses synthetic data (with
known payoff functions to evaluate these algorithms’ accu-
racy). Section VI uses the real-world MAROB data about ten
terrorist groups [29] with actions by both the terrorist groups
and the government of the country involved. Section VI-
B also uses a very fine-grained counter-terrorism data set
with three actors: the terror group LeT [2] which carried
out the Mumbai attacks and the governments of Pakistan and
India. Section VII compares our best algorithm with the ICEL
algorithm. We used the MAROB data to compare ICEL and
our SVMM method. Because of Proposition 2, we could not
apply ICEL to the synthetic data, and because the LeT data
contained a host of environmental variables, we could not
apply ICEL to that either. For the experiments on both the
synthetic and real data sets, the discount factor α is set to 0.9.

A. Generation of Synthetic Data

We wrote R code to generate random games with random
linear payoff functions and a random state of the world at
each time. A payoff function is represented as a vector of
coefficients of a linear function. Each of the payoff functions
and the state of the world at each time point is a uniformly
randomly directed positive vector of norm 1. After generating
the payoffs and the state of the world at different times,
an action history for all players is generated assuming best
response. We are not simulating a game. Instead, each time
point is a “what if” scenario, where each player is presented
with a state of the world and they choose the best response
as per their payoff functions. The code to generate random
games varies the following inputs.

The state of the world is thus an (na ∗ np)-dimensional
vector. Payoff for each action is a linear function of the state
of the world, and hence, it is represented as an (na ∗ np)-
dimensional vector of coefficients. Thus, each player has na
such vectors. 4 We introduce noise into our experiments by
allowing each player, at each time step, to play either a random
response independently at random with probability given by
parameter “noise” or a best response to the current state of
the world. To evaluate quality of payoffs learned, we learn the
np ∗ na2 length vector of parameters of each player’s payoff
function. We measure the quality of our three payoff learning
algorithms by comparing this vector with the actual payoff
function vectors using Pearson correlation coefficients (PCCs).

4For most experiments on synthetic data, we have na = np = 3. Thus,
each payoff function is a 9-D vector. As there are three payoff functions per
player (one per action), we are trying to learn a total of nine vectors, each of
which is 9-D.

Fig. 1. Effect of payoff function dimension on the performance of the SVM
method for synthetic data.

Sections V-B–V-F compare the three algorithms presented
in this article in order to identify which one is best– both from
an accuracy and from a run-time perspective.

B. Performance of SVM-Based Method

We use a linear soft margin SVM classifier using the R
interface to libsvm [38]. The hyperparameter for tuning this
SVM is the cost of misclassification C . We tried the values
of C ∈ {0.01, 0.1, 1, 10, 100} and chose the best-forming
SVM model. However, we also report the overall results
(encompassing all five values of C). The choice of C turns
out to not be critical to the performance of our algorithms.
SVMM performs very well with median PCC above 0.8 for
games with five players and five actions for each player and
median PCC between 0.6 and 0.8 for most of the smaller
games. In addition, performance degrades slowly with noise.
We now analyze SVMM’s performance in more detail.

1) Effect of Dimension of Payoff Function (SVMM): Fig. 1
shows the effect of dimension of the payoff function on the
performance of the SVMM.5 Here, the number of sampled
history points is 1000 and the noise parameter is set to 0.
Surprisingly, the performance improves with dimension of the
payoff function. This will be discussed in detail later in this
section.

2) Effect of Noise (SVMM): Fig. 2 shows the effect of noise
on SVMM’s performance. The number of samples is 1000
and the dimension of the payoff function is 9. We note that
performance degrades gracefully under noise. For zero noise,
the median PCC value is 0.73, whereas even with noise as
high as 0.3 (i.e., with probability 0.3, a player chooses to play
a random action instead of the best response), we still get a
median PCC of 0.66.

3) Effect of Length of History (n) (SVMM): Fig. 3 shows the
effect of the length of the history on SVMM’s performance.
There is slight improvement in median PCC, as n increases
from 200 to 1000.

5The figure was plotted using the standard “boxplot” function in R
(http://www.r-bloggers.com/boxplots-and-beyond-part-i/). The boxes denote
the range of 25th and 75th percentiles. The line in the box is the median.
The upper and lower lines outside the box are the “nominal” range of values
and the circles are outliers.
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Fig. 2. Effect of noise on the performance of the SVM method for synthetic
data.

Fig. 3. Effect of history length on the performance of the SVM method for
synthetic data.

Fig. 4. Effect of dimension of payoff function on the performance of the
SCA for synthetic data.

C. Performance of SCA

In this section, we describe the performance of the SCA
method and show that it is inferior to the SVMM.

1) Effect of Dimension of Payoff Function (SCA): Fig. 4
shows the effect of dimension of the payoff function on SCA’s
performance. The number of sample history points is 1000 and
the noise parameter is set to 0. Performance degrades with
dimension of the payoff function.

2) Effect of Noise (SCA): Fig. 5 shows the effect of noise
on SCA’s performance. The number of samples is 200 and

Fig. 5. Effect of noise on the performance of the SCA for synthetic data.

Fig. 6. Effect of history length on the performance of the SCA for synthetic
data.

the dimension of the payoff function is 9. While performance
does not degrade significantly with noise, overall performance
is poor (overall PCC median of 0.22).

3) Effect of History Length (SCA): Fig. 6 shows the effect
of history length on SCA’s performance. Here, noise is 0
and dimension of the payoff function is 9. Somewhat counter
intuitively, performance degrades with history length. This
could be because the number of slack variables increases
linearly with the length of history. Thus, the degrees of
freedom of the model are potentially higher with a longer
history, and thus, a longer history can lead to overfitting.

D. Performance of Centroid-Based Method

In this section, we study CBS’s performance and show that
it is far inferior to the SVMM.

1) Effect of � (CBS): Fig. 7 shows the effect of � on
CBS’s performance. Here, the length of history is 200 and
the dimension of the payoff function is 9. The noise is 0.
The overall performance of CBS is better than that of SCA
but much worse than the SVM-based method (PCC median
of 0.45 for � = 0.9).

2) Effect of Dimension of Payoff Function (CBS): Fig. 8
shows the effect of dimension of the payoff function on the
performance of CBS. Here, the number of sample history
points is 1000 and the noise parameter is set to 0. Performance
shows no discernible trend.
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Fig. 7. Effect of epsilon on the performance of CBS for synthetic data.

Fig. 8. Effect of dimension of payoff function on the performance of CBS
for synthetic data.

Fig. 9. Effect of noise on the performance of CBS for synthetic data.

3) Effect of Noise: Fig. 9 shows the effect of noise on the
performance of CBS. Here, the number of samples is 1000
and the dimension of the payoff function is 9. Performance
degrades sharply with noise and, even with 10% noise, is close
to random.

4) Effect of Length of History (CBS): Fig. 10 shows the
effect of history length on the performance of CBS. Here,
noise is 0 and the dimension of the payoff function is 9. Per-
formance does not improve with n and shows no discernible
trend.

E. Runtime Comparison of CBS, SCA, and SVMM

Fig. 11 shows the relative runtime performance of the three
methods for varying lengths of histories. The SVMM is faster

Fig. 10. Effect of history length on the performance of CBS for synthetic
data.

Fig. 11. Comparison of runtime of various methods for synthetic data.

Fig. 12. Runtime of the SVM method.

than SCA by an order of magnitude and faster than CBS by
two to three orders of magnitude. For this comparison, na
and np are 3. The actual performance time of the SVMM for
varying values of n, na, and np is given in Fig. 12.

F. Discussion of the Results

1) Effect of Dimension of Payoff Function: The effect of
the dimension of the payoff functions on the performance of
the SVMM, SCA, and CBS is depicted in Figs. 1, 4, and 8,
respectively. We see that SVMM’s performance improves with
dimensionality. This is counter-intuitive as the performance
of most classifiers degrades with dimension. However, for
the payoff inference problem, the number of constraints and,
hence, the number of points increase with the payoff function’s
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dimension (for a fixed length of history). Thus, while the
complexity of the classifier increases with data dimensionality,
we have more data to learn from, and hence, performance
improves with dimensionality. In the case of SCA, we see
that performance degrades with dimensionality. For SCA,
the number of slack variables is the product of history length
and dimension of the payoff function. Thus, the increase in
dimension leads to an increase in the number of the slack
variables. We hypothesize that in SCA, this increase in the
number of slack variables with increase in dimensionality leads
to performance degradation. CBS shows no discernible trend
with increasing dimensionality. First, we are only approxi-
mating the centroid. Second, the centroid is very sensitive to
individual constraints. Thus, CBS chooses an approximation
to a feasible representative solution that is very sensitive to
individual constraints. Therefore, it is not surprising that its
performance is erratic.

2) Effect of Noise: The effect of noise on the performance of
the SVMM, SCA, and CBS algorithms is shown in Figs. 2, 5,
and 9, respectively. SVMM’s performance degrades gracefully
with noise. As soft margin SVMs evolved from hard margin
SVMs to handle misclassification, this graceful degradation is
expected. SCA’s performance remains more or less constant
and very poor with and without noise. SCA accommodates
noisy points by allowing constraints to be violated by allowing
negative slack variables, and hence, some robustness to noise
is expected. However, a total lack of trend is a bit surpris-
ing. As noted earlier, centroid is very sensitive to individual
constraints, and hence, extreme sensitivity to noise, as shown
in Fig. 9, is expected.

3) Effect of History Length: The effect of history length
on the performance of SVMM, SCA, and CBS is shown
in Figs. 3, 6, and 10, respectively. SVMM’s performance
improves slightly when n increases. Thus, the SVMM learns
a better classifier with more data. Surprisingly, for synthetic
data, it seems that the SVMM is able to learn a very good
classifier even with n = 200. SCA again shows the trend
of degrading performance with the increasing number of
constraints. Performance of CBS is again erratic.

4) Runtime: The runtimes of the SVMM, SCA, and CBS
are compared in Fig. 11. CBS is easily the worst. SVMM’s
runtime increases with length of the history (see Fig. 12)
because the problem size varies linearly with the length of
the history. The corresponding increase with the number of
actions is faster, as the problem size varies quadratically with
the number of actions. SVMM’s runtime increases with the
number of players in general; however, when the number of
players is ten, it suddenly drops. We do not have a good
explanation for this behavior, hope to find one in the future
work.

Bottom Line: We conclude by stating that of the three
algorithms presented in this article, SVMM achieves signif-
icantly higher accuracy than SCA and CBS, is more robust
to noise, and performs much better and faster than the other
two methods. It gives excellent performance on relatively large
games (median PCC is above 0.8 for games with five players,
five actions per player).

VI. EXPERIMENTS ON REAL-WORLD DATA SETS

A. MAROB Experiments

We ran tests on all ten terror groups in the MAROB [29]
data set for which at least 20 rows of data are available.
We aggregated low-level MAROB actions (both by the group
and the government of the nation where the group is based)
into high-level actions. The high-level actions involved two
actions each for the group (political engagement with the gov-
ernment, militant activities) and for the government (political
engagement with the group and suppression of the group).
Each of these actions can be carried out at mild, medium,
and intense extents. Hence, each player can take one of nine
actions, leading to 81 total joint actions. We ran experiments
with data about ten group/nation pairs.6 As the ground truth
about payoffs for the terrorist groups cannot be tested directly,
in order to test the validity of the payoffs learned, we made
predictions about actions carried out by terror groups and gov-
ernments and checked the accuracy of these predictions. The
mean number of actions for the government player denoted
by G is 4.1 and the mean for the terror organization denoted
by T O is 5.6. The mean number of joint actions (product of
actions of G and T O) is 25.30. The history length of each
game is between 20 and 25.

There are two issues related to these data that must be
mentioned.

1) We only have 20 data points for each group/nation pair.
2) We do not know the ground truth.

Therefore, we evaluate the quality of the learned payoffs as
follows. We compute Spearman’s rank correlation coefficient
(SCC) between predicted payoffs and the binary vector rep-
resenting actual actions performed during the time period.
While the payoffs are reals in [0, 1], we are correlating them
with binary variables in {0, 1}, and thus even in the best
case, we cannot expect the correlation to be 1. For example,
for five actions, a point in history may be (1, 0, 0, 0, 0).
It will be correctly predicted by a payoff vector, such as
p = (1, p2, p3, p4, p5), pi < 1 ∀i ∈ {2 . . . 5}. Assuming
that pi �= p j ∀i, j ∈ {1 . . . 5}, the expected SCC for these
data (assuming pi is uniformly distributed over [0, 1)) is
0.71 which is extremely good, considering the paucity of
data. Fig. 13 gives the best expected SCC as a function of
the number of actions of a player. We normalized the SCC
between predicted payoffs and the actual binary action vector
to arrive at normalized SCC (NSCC) based on the number of
actions of a player.

Comparison of Performance of the Three Methods (Marob):
Fig. 14 compares CBS, SCA, and SVMM. On this data set,
SVMM uses the radial basis function as the kernel and the
model is selected based on leave-one-out cross validation.
Here again, SVMM performs well (median NSCC = 0.7) and
comfortably outscores SCA (median NSCC = 0.6) and CBS
(median NSCC = 0). While for some part of the data set
CBS does well with 75th percentile NSCC value close to 0.4,
the average CBS performs very poorly with a median NSCC of

6We pair group and nations based on the simplified assumption that groups
have very limited interactions. While there might be a few exceptions, this is
true in most real-world cases.
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Fig. 13. Best expected SCC.

Fig. 14. Comparative performance of three methods on the MAROB data set.

close to 0, indicating near random performance. SCA performs
well but not as well as the SVMM.

As in the case of synthetic data (see Fig. 9), CBS is very
sensitive to noise. SVMM and SCA perform well because
they both allow some constraints to be violated. As shown
in Figs. 4 and 6, SCA’s performance degrades with the number
of constraints. However, since all the histories in the MAROB
data set are short (∼20), SCA performs quite well. SVMM
performs even better than SCA. We hypothesize that this
is because SVMM accommodates nonlinear payoff functions
using kernel methods and SCA allows only linear payoffs.
This may be because real players’ payoffs functions are not
necessarily linear.

B. LeT Experiments

We conducted extensive tests on the LeT data set [2], which
contains 252 rows (months) of data about 700+ variables.7

We choose 24 variables, which we considered relevant to our
problem. These variables include six variables for various
types of attacks carried out by LeT and eight for actions
taken by the Pakistani government and military. The other
ten variables, such as the existence of an international ban,
the existence of conflict within LeT, split in LeT, and so on,
are treated as environmental variables.8

The LeT data set models a relatively big game. Players
can take many actions simultaneously. If we encode each
combination of actions as a separate action, we will end
up with 64 actions for LeT and 256 actions for Pakistani

7It includes details about attacks carried out by LeT, communications
campaigns, and rallies organized by LeT. It also includes actions by the state
(Pakistan) and international actors (U.S., India, EU, and so on), such as arrests,
tribunals, and killings related to members of LeT.

8Environmental variables can be seen to be actions of another player (similar
to the chance player in classical game theory), whose actions we cannot
predict (or are not interested in predicting). Nevertheless, these actions do
have an effect on payoffs of other players.

government.9 This leads to a very high-dimensional encoding
for this data set. As an illustration, for a given history,
H of this game, E(H ) for Pakistani government would be
256∗(1+336) = 86 272 dimensions (ignoring the environment
variables). We now describe how we tackle the dimensionality
problem.

1) Independent Payoffs for Simultaneous Actions: One nat-
ural way to reduce dimensionality is to assume that payoffs for
simultaneous actions are independent and additive. However,
different actions may require different levels of effort for
the player and it is reasonable to assume that payoffs are
proportional to effort. For example, if attacking a security
installation requires double the effort of attacking civilian
transport, then the payoffs for the two actions are comparable
only if the payoff from attacking the security installation is
double the payoff from attacking civilian transport. This is
because the capability and resources of an organization are
limited, and thus, to maximize the payoff, effort should be
spent on actions that give maximum payoff for each unit of
effort. Therefore, for this approach, we need to assign effort-
based weights to players’ actions. However, there is no reliable
way of knowing how much effort was needed for each action
of the player. Therefore, we rejected this approach.

Instead, we relax the constraints in (6) by assuming that
regret for each action actually played at time t is greater
than or equal to regret for actions not played at time t .
For example, assume that at time t , a player played actions
(0, 1, 0, 1, 0, 0) indicating that they took actions 2 and 4 out
of possible actions in {1, . . . , 6}. We then assume that regrets
for actions 2 and 4 were higher than regrets for other actions
at time t . The other alternative could have been encoding each
of the possible combinations of actions as a separate action,
which leads to 64 possible distinct actions at each time step.

2) Evaluation of Quality of Learned Payoffs: We evaluate
the quality of prediction in two ways. First, we compute the
SCC of events and payoffs for each time period from the
test data. We compute SCC between predicted payoffs for
actions and the binary vector representing actual occurrence
of the events during the time period. We use this method to
compare the performance of SVMM, CBS, and SCA. Second,
for SVMM, we compute the quality of predictions using area
under the RoC curve as our metric. We do not use predictions
to evaluate CBS and SCA methods because these methods do
not extend naturally to prediction, and prediction is not our
primary objective.

3) Comparison of the Methods: Fig. 15 presents compar-
ative performance of the three methods on the LeT data set.
Again, SVMM performs well and clearly outperforms SCA
and CBS. The NSCC for SVMM when the player considered
is LeT in the data set is 0.59. The NSCC for SVMM when
the player considered is Pakistan is 0.80. The predictive
performance of SVMM is good with area under single point
RoC curve of 0.74 and 0.85 for LeT and Pakistan, respectively
(see Fig. 16).

9The data set does not attribute other actions to specific third part players,
such as the U.S. or India.
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Fig. 15. Performance of SVMM, SCA, and CBS on LeT data set.

Fig. 16. Predictive performance of SVMM on LeT data set.

The performance of the SVMM is much better than the other
two methods. We think that the reasons are threefold. First,
the SVMM is robust to noise. Second, the SVMM allows for
nonlinear payoff functions. Third, SVMM performs better with
more constraints and higher dimensional payoff functions.

4) Policy Options Based on Payoffs Learned About LeT: We
used the payoffs learned for different actions to qualitatively
estimate the values of the different actions that the players
in the LeT case study can perform. In particular, the payoffs
suggest the value or lack of value of certain actions by the
two players (LeT and the Government of Pakistan), as well
as actors who can reshape the environment surrounding LeT,
such as India or the U.S.

a) Actions by Pakistan: The payoffs we inferred using
PIE have made some concrete discoveries. First, they suggest
that arrests of LeT personnel by Pakistan are ineffective—a
finding consistent with [2] where the authors found that arrests
of LeT personnel can actually be followed by attacks on soft
targets. Second, they suggest that release of operatives from
prison is also not effective in curbing attacks by LeT. This
is consistent with Rule (PST-4) in [2], which says that LeT
attacks symbolic sites three months after months when the
Pakistani government releases 0–9 LeT prisoners and LeT has
locations across the border in India. It is also consistent with
Rule (AA-4) in [2], which says that LeT attacks carriy out
attempted attacks one month after 0–2 LeT personnels are
released.

PIE has additionally shown that a ban on LeT by the
Pakistani government can have an effect on curbing attacks
on transportation sites, public sites, and tourist sites. This is
a new result, consistent with results in [2], which shows that
having a ban is linked to LeT backed attacks on Hindus and
not having a ban is linked to attacks on professional security
forces, security installations, and armed clashes.

Another interesting new finding by PIE is that a freeze of
LeT assets by Pakistan are linked to a much higher payoff

Fig. 17. Comparative performance of ICEL and SVMM.

for targeting professional security forces, security installations,
and Hindus.

Finally, PIE’s payoffs confirm conventional wisdom that
military support by Pakistan leads to higher payoffs for
targeting security forces, installations, and public structures.

b) Actions by international actors (primarily India and
the U.S.): We know from [2] that arrests of LeT personnel
are linked to a reduction in attacks on hard targets (such as
security installations) but are linked to an increase in attacks on
softer targets—PIE’s inferred payoffs confirm this by showing
that such arrests lead to increased attacks on civilians on the
basis of ethnicity (Hindus) and tourist sites.

Likewise, the imposition of international bans can lead to
more attacks on civilian targets and fewer attacks on security
installations, suggesting that external pressure on LeT causes
them to move from attacking hard targets to softer ones.

A new result derived by PIE is that asset freezes reduce the
payoffs for LeT to carry out attacks on civilian targets.

VII. COMPARISON WITH ICEL

We compare the performance of our best algorithm
(SVMM) against the ICEL algorithm of [27]. ICEL assumes
that players play a correlated equilibrium. The input to ICEL is
the game history and corresponding outcomes, which depend
on joint actions of the players. The output is a joint distrib-
ution over the player’s actions. The learned distribution is a
correlated equilibrium for the corresponding inferred payoffs.

We evaluated the performance of ICEL against SVMM
using the NSCC metric on the MAROB data set. We could
not evaluate ICEL on the LeT data set because it has envi-
ronmental variables in addition to player actions and ICEL
is not applicable to games with environmental variables.
If the payoffs learned by ICEL correspond to a correlated
equilibrium actually played by the players, we can expect
good rank correlation between chosen actions and payoffs.
However, as can be seen from Fig. 17, this is not the case.
The median NSCC is 0.1140 over all games (which suggests
that ICEL is only marginally better than random noise). NSCC
is above 0.5 in only 3 out of 20 instances (ten games, two
players per game). In comparison, SVMM exhibits far superior
performance with median NSCC of 0.7.

We believe that the poor performance of ICEL stems from
two factors. First, we have no knowledge of the outcomes, only
of game history. We empirically observed that in the absence
of any information about the outcomes, the ICEL convex
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Fig. 18. Comparative runtime for ICEL and SVMM.

program simply converges to the distribution of actions actu-
ally played by the players (mean Kullback–Leibler divergence
between actual and learned distributions is 0.043, max 0.088).
Thus, the method corresponds to predicting that whatever
happened in past will happen in the future with no notion
of recency and dynamics. Second, in our real-world data,
the players may not play a correlated equilibrium and our
proposed dynamics, which are based on regret minimization
and recency, may be a closer approximation of reality.

The runtime comparison is shown in Fig. 18. Here again,
SVMM is one to two orders of magnitude faster than ICEL.
However, this is a bit of apples and oranges comparison as
the SVMM code is in R with a libsvm backend and the ICEL
code uses the Python code provided by authors publicly at their
website. We note that ability to use highly optimized, stable,
and mature libraries provided by machine learning community
for classification tasks is one of the advantages of our approach
over other extant approaches.

VIII. CONCLUSION

In this article, we have developed, for the first time,
a method to infer payoffs for real-world games, under much
more reasonable assumptions than past work. Specifically,
unlike most past work, PIE is applicable to multiplayer games,
allows players to not be fully rational, does not assume a
coordination mechanism, does not assume a symmetric game,
and is scalable, while other works are lacking in at least one
of these aspects. Moreover, we apply our theory to real-world
strategic games with two real-world counter-terrorism data sets
based on two widely influential previous studies [2], [39].
Such individuals seek understanding—and our goal in learning
these payoffs were to facilitate explaining the payoffs to such
senior decision makers—rather than prediction. Toward this
end, we propose three heuristics that may be used to learn
payoffs of players in multiplayer real-world games, including

TABLE I

SUMMARY OF NOTATIONS

one that builds upon SVMs—a tested technique in data mining
that has never been used before for learning payoffs. Though
the goal of this article is not prediction, we test our methods
in three ways. We use a synthetic data set and a well-known
terrorism data set [29] to see how well we can predict known
payoff functions (synthetic data) and actions (MAROB data).
Even though we have small amounts of data in both cases,
they are bigger than those in the previous studies, and our
best algorithm (SVMM) achieves good correlations. Our third
test looks at ten years of data about the terror group LeT
(responsible for the 2008 Mumbai attacks). We show that
SVMM is both faster and much more accurate than ICEL [27],
one of the best prior algorithms in the literature. Much work
remains to be done. Even though PIE is more scalable than
past work, there is still a long way to go. Moreover, explaining
learned payoff functions to real-world decision makers also
has many challenging aspects that deserve much more future
study.

APPENDIX

A. Summary of Notations

Table I shows a summary of notations in this article.

B. Additional Experimental Results

1) Effect of Cost (SVM): Fig. 19 shows the effect of
the hyperparameter C on the performance of the SVMM.
We present this figure in order to show that for the synthetic
data, the performance is quite stable and not very dependent on
the choice of the hyperparameter C . Hence, tuning the SVM
is straightforward.

2) Actual Runtime for CBS and SCA Methods: Figs. 20 and
21 show the actual runtime of CBS and SCA under various
settings.

C. Proof of Proposition 1

Proof 1: The number of constraints for each player at time
t ∈ [T ] is M − 1. Each constraint has at most T variables.
Thus, the total number of variables that can occur in LC is at
most (M − 1)NT .
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Fig. 19. Effect of cost on the performance of the SVM method for synthetic
data.

Fig. 20. Runtimes for SCA.

Fig. 21. Runtimes for CBS.

D. Proof of Proposition 2

Proof 2: Let the entropy function be defined as follows:

−
∑

i∈[N],a∈A
ui (a) ln(ui (a)).

We obtain the maximum value of this function when ∀i ∈
[N], ∀a ∈ A we can deduce that ui (a) = e−1. Since we
know that when � ∈ [0, 1]

t−1∑

t̂=1

αt−1−t̂� · e−1 ≤
t−1∑

t̂=1

αt−1−t̂ e−1

our rationality constraints in (5) are satisfied. For these rea-
sons, it follows that the theorem holds. �

E. Proof of Proposition 4

Proof 3: We note that for points on one side of decision
surface, the value of decision surface is less than 0 and for the
other side, it is greater than 0. Therefore, if points encoded
for the RHS are on the positive side and LHS on the negative
side, (6) is satisfied. Otherwise, we can flip sign of the decision
function and achieve the same result.

F. Proof of Proposition 5

Proof 4: Without loss of generality, we assume that points
encoding the RHS of (6) are assigned positive labels and points
encoding the LHS are assigned negative labels. A misclassified
point LHS point can be assigned a decision value higher than
the RHS point that can lead to at most one violated constraint.
Similarly, a misclassified RHS point can lead to at most one
violated constraint. Thus in all, we can have at most n0 + n1
violated constraints.

REFERENCES

[1] T. C. Schelling, The Strategy of Conflict. London, U.K.: Oxford Univ.
Press, 1960.

[2] V. Subrahmanian, A. Mannes, A. Sliva, J. Shakarian, and J. P. Dickerson,
Computational Analysis of Terrorist Groups: Lashkar-e-Taiba: Lashkar-
e-Taiba. Basel, Switzerland: Springer, 2012.

[3] J. P. Dickerson, A. Mannes, and V. Subrahmanian, “Dealing with
lashkar-e-taiba: A multi-player game-theoretic perspective,” in Proc. Eur.
Intell. Secur. Inform. Conf., Sep. 2011, pp. 354–359.

[4] D. P. Foster and R. V. Vohra, “Calibrated learning and correlated
equilibrium,” Games Econ. Behav., vol. 21, no. 1, pp. 40–55, 1997.

[5] F. Xia, B. Jedari, L. T. Yang, J. Ma, and R. Huang, “A signaling game for
uncertain data delivery in selfish mobile social networks,” IEEE Trans.
Comput. Social Syst., vol. 3, no. 2, pp. 100–112, Jun. 2016.

[6] H. E. Lapan and T. Sandler, “Terrorism and signalling,” Eur. J. Political
Econ., vol. 9, no. 3, pp. 383–397, 1993.

[7] W. Enders and T. Sandler, “Terrorism: Theory and applications,” in
Handbook of Defense Economics, vol. 1. Amsterdam, The Netherlands:
Elsevier, 1995, pp. 213–249.

[8] M. Tambe, Security Game Theory: Algorithms, Deployed Systerm,
Lessons Learned. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[9] R. Lindelauf, P. Borm, and H. Hamers, “The influence of secrecy on
the communication structure of covert networks,” Social Netw., vol. 31,
no. 2, pp. 126–137, 2009.

[10] R. Lindelauf, H. Hamers, and B. Husslage, “Cooperative game theoretic
centrality analysis of terrorist networks: The cases of Jemaah Islamiyah
and al Qaeda,” Eur. J. Oper. Res., vol. 229, no. 1, pp. 230–238, 2013.

[11] T. P. Michalak, T. Rahwan, O. Skibski, and M. Wooldridge, “Defeating
terrorist networks with game theory,” IEEE Intell. Syst., vol. 30, no. 1,
pp. 53–61, Jan./Feb. 2015.

[12] Z. Wang, Y. Yin, and B. An, “Computing optimal monitoring strategy for
detecting terrorist plots,” in Proc. 30th AAAI Conf. Artif. Intell. (AAAI),
Feb. 2016, pp. 637–643.

[13] J. P. Dickerson, A. Sawant, M. T. Hajiaghayi, and V. Subrahmanian,
“Preve: A policy recommendation engine based on vector equilibria
applied to reducing let’s attacks,” in Proc. IEEE/ACM Int. Conf. Adv.
Social Netw. Anal. Mining, 2013, pp. 1084–1091.

[14] A. Petrin, “Quantifying the benefits of new products: The case of the
minivan,” Nat. Bureau Econ. Res., Cambridge, MA, USA, Tech. Rep.,
2001.

[15] A. Nevo, “Measuring market power in the ready-to-eat cereal industry,”
Econometrica, vol. 69, no. 2, pp. 307–342, 2001.

[16] J. Suzuki, “Land use regulation as a barrier to entry: Evidence from the
texas lodging industry,” Int. Econ. Rev., vol. 54, no. 2, pp. 495–523,
2013.

[17] M. Conlin and V. Kadiyali, “Entry-deterring capacity in the texas lodging
industry,” J. Econ. Manage. Strategy, vol. 15, no. 1, pp. 167–185, 2006.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:29 UTC from IEEE Xplore.  Restrictions apply. 



56 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 1, FEBRUARY 2020

[18] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. ICML, 2000, pp. 663–670.

[19] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Max-
imum entropy inverse reinforcement learning,” in Proc. AAAI, 2008,
pp. 1433–1438.

[20] G. Neu and C. Szepesvari, “Apprenticeship learning using inverse rein-
forcement learning and gradient methods,” Jun. 2012, arXiv:1206.5264.
[Online]. Available: https://arxiv.org/abs/1206.5264

[21] S. Natarajan, G. Kunapuli, K. Judah, P. Tadepalli, K. Kersting, and
J. Shavlik, “Multi-agent inverse reinforcement learning,” in Proc. 9th
Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2010, pp. 395–400.

[22] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Coopera-
tive inverse reinforcement learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 3909–3917.

[23] T. S. Reddy, V. Gopikrishna, G. Zaruba, and M. Huber, “Inverse
reinforcement learning for decentralized non-cooperative multiagent
systems,” in Proc. IEEE Int. Conf. Syst., Man, (SMC), Oct. 2012,
pp. 1930–1935.

[24] B. Wiedenbeck and M. P. Wellman, “Learning payoffs in large symmet-
ric games,” in Proc. Int. Conf. Auto. Agents Multiagent Syst., May 2015,
pp. 1881–1882.

[25] X. Wang and D. Klabjan, “Competitive multi-agent inverse rein-
forcement learning with sub-optimal demonstrations,” Jan. 2018,
arXiv:1801.02124. [Online]. Available: https://arxiv.org/abs/1801.02124

[26] X. Lin, P. A. Beling, and R. Cogill, “Multiagent inverse reinforcement
learning for two-person zero-sum games,” IEEE Trans. Games, vol. 10,
no. 1, pp. 56–68, Mar. 2018.

[27] K. Waugh, D. Bagnell, and B. D. Ziebart, “Computational ratio-
nalization: The inverse equilibrium problem,” in Proc. ICML, 2011,
pp. 1169–1176.

[28] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[29] A. P. Asal, Victor, and J. Wilkenfeld. (Sep. 2008). Minorities at risk
organizational behavior data and codebook version 9/2008. [Online].
Available: http://www.cidcm.umd.edu/mar/data.asp

[30] W. C. Stirling, “Conditional coordination games on cyclic social influ-
ence networks,” IEEE Trans. Computat. Social Syst., vol. 6, no. 2,
pp. 250–267, Apr. 2019.

[31] M. Soltanolkottabi, D. Ben-Arieh, and C.-H. Wu, “Modeling behavioral
response to vaccination using public goods game,” IEEE Trans. Com-
putat. Social Syst., vol. 6, no. 2, pp. 268–276, Apr. 2019.

[32] I. Nevo and I. Erev, “On surprise, change, and the effect of recent
outcomes,” Frontiers Psychol., vol. 3, p. 24, Feb. 2012.

[33] C. G. Chorus, “A new model of random regret minimization,” in Proc.
EJTIR, vol. 2, 2010, p. 10.

[34] I. Simonson, “The influence of anticipating regret and responsibility on
purchase decisions,” J. Consum. Res., vol. 19, pp. 105–118, Jun. 1992.

[35] M. Zeelenberg and R. Pieters, “A theory of regret regulation 1.0,”
J. Consum. Psychol., vol. 17, no. 1, pp. 3–18, 2007.

[36] L. A. Rademacher, “Approximating the centroid is hard,” in Proc. SOCG.
ACM, 2007, pp. 302–305.

[37] D. Bertsimas and S. Vempala, “Solving convex programs by random
walks,” J. ACM, vol. 51, no. 4, pp. 540–556, 2004.

[38] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol. (TIST), vol. 2, no. 3, p. 27,
2011.

[39] V. Subrahmanian, A. Mannes, A. Roul, and R. Raghavan, Indian
Mujahideen: Computational Analysis and Public Policy. Springer, 2013.

Haipeng Chen received the B.S. degree from the
University of Science and Technology of China,
Hefei, China, in 2013, and the Ph.D. degree
from Nanyang Technological University, Singapore,
in 2018. He currently holds a postdoctoral posi-
tion with the Department of Computer Science,
Dartmouth College, Hanover, NH, USA. He has
published various articles in top conferences and
top journal in the field of artificial intelligence.
His research lies in the general areas of artificial
intelligence (AI), including machine learning, data

mining, multiagent systems, and computational game theory and economics.
Besides the theoretical foundations of AI, he is also interested at their
intersections with various application domains, such as cybersecurity and
intelligent transportation.

He was a member of the winning team for the Microsoft Malmo Collabo-
rative AI Challenge and the runner-up team for the Innovation Demonstration
Award of IJCAI’19. He has published various articles in top conferences,
such as Proceedings of International Conference on Association for the
Advancement of Artificial Intelligence (AAAI), Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), Proceedings of ACM
International Conference on Knowledge Discovery and Data Mining (KDD),
and Proceedings of IEEE International Conference on Data Mining (ICDM),
and top journals, such as the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS, ACM Transactions on Intelligent Systems and Technol-
ogy, and Transportation Research Part C: Emerging Technologies. He is a
Program Committee Member for top conferences, such as AAAI, IJCAI,
and Proceedings of International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), and a Journal Reviewer for top journals,
such as the European Journal of Operational Research, the IEEE Intelligent
Systems (IEEE-IS), the Journal of Computer and System Sciences, and
ACM Temperature-Controlled Logistics.

Mohammad T. Hajiaghayi (F’20) received the
Ph.D. degree from MIT, Cambridge, MA, USA,
in 2005.

He is a Jack and Rita G. Minker Professor of
computer science with the University of Maryland
at College Park, College Park, MD, USA. He was
a Postdoctoral Fellow at the School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA,
USA, and in the Computer Science and Artificial
Intelligence Laboratory, MIT. He has been a Dis-
tinguished Scientist in top labs in USA, such as

AT&T Labs Research, Murray Hill, NJ, USA, Amazon Labs New York, NY,
USA, Google Research, New York, Microsoft Research, New York, and IBM
Research, Hawthorne, NY, USA. His main area of research is designing algo-
rithmic frameworks. In particular, he designs efficient online algorithms, game
theory algorithms, approximation algorithms, fixed-parameter algorithms, and
streaming/parallel algorithms for big and complex networks and games, and
often tests them in real-world and practical situations.

Dr. Hajiaghayi is a Guggenheim Fellow and an ACM Fellow.

Sarit Kraus received the Ph.D. degree in computer
science from the Hebrew University of Jerusalem,
Jerusalem, Israel, in 1989.

She is currently a Professor of computer sci-
ence with Bar-Ilan University, Ramat Gan, Israel.
Her research is focused on intelligent agents and
multi-agent systems (including people and robots).
She has published over 400 articles in leading jour-
nals and major conferences, and has co-authored five
books.

Dr. Kraus was an ACM, Proceedings of Interna-
tional Conference on Association for the Advancement of Artificial Intelli-
gence (AAAI), and ECCAI Fellow. She is a member of the Board of Directors
of the International Foundation for Multi-agent Systems (IFAAMAS). She has
received many prestigious awards for her work. She was awarded the Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI)
Computers and Thought Award, the ACM SIGART Agents Research Award,
and the EMET Prize, and she was twice the winner of the IFAAMAS
Influential Paper Award. She was a recipient of the advanced ERC grant.
She was the IJCAI 2019 Program Chair.

Anshul Sawant studied computer science at IIT
Delhi, New Delhi, India, and received the Ph.D.
degree in computer science from the University of
Maryland, College Park, MD, USA, in 2016, where
he studied behavior of intelligent agents under the
guidance of Prof. V. S. Subrahmanian and Prof. M.
Hajiaghayi.

He is currently with Google, Mountain View, CA,
USA, where he works on recommender systems for
Google shopping.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:29 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: PIE: DATA-DRIVEN PAYOFF INFERENCE ENGINE FOR STRATEGIC SECURITY APPLICATIONS 57

Edoardo Serra received the Ph.D. degree in com-
puter science engineering from the University of
Calabria, Rende, Italy, in 2012.

He was a Visiting Researcher in the Computer
Science Department, University of California at
Los Angeles, Los Angeles, CA, USA, from Octo-
ber 2010 to July 2011. After the Ph.D. degree, he
held a postdoctoral position at the University of Cal-
abria in 2012, and he was a Research Associate at the
University of Maryland, College Park, MD, USA,
from 2013 to August 2015. Since August 2015, he

has been an Assistant Professor with the Computer Science Department, Boise
State University (BSU), Boise, ID, USA. His research interest is in the field
of AI with applications in cybersecurity and national security.

V. S. Subrahmanian is a Distinguished Profes-
sor in cybersecurity, technology, and society and
the Director of the Institute for Security, Tech-
nology, and Society, Dartmouth College, Hanover,
NH, USA. He previously served as a Professor of
computer science at the University of Maryland,
College Park, MD, USA, from 1989 to 2017, where
he created and headed both the Laboratory for
Computational Cultural Dynamics and the Center
for Digital International Government. He also served
over six years as the Director for the Institute for

Advanced Computer Studies, University of Maryland. He is an expert on big
data analytics, including methods to analyze text/geospatial/relational/social
network data, learn behavioral models from the data, forecast actions, and
influence behaviors with applications to cybersecurity and counterterrorism.
He has written five books, edited ten articles, and published over 300 refereed
articles.

Dr. Subrahmanian is a fellow of the American Association for the Advance-
ment of Science and the Association for the Advancement of Artificial
Intelligence, and received numerous other honors and awards. His work has
been featured in numerous outlets, such as the Baltimore Sun, the Economist,
Science, Nature, the Washington Post, and American Public Media. He serves
on the editorial boards of numerous journals, including Science, on the Board
of Directors of the Development Gateway Foundation (set up by the World
Bank) and SentiMetrix, Inc., and on the Research Advisory Board of Tata
Consultancy Services. He previously served on DARPAs Executive Advisory
Council on Advanced Logistics and as an Ad Hoc Member of the U.S. Air
Force Science Advisory Board.

Yanhai Xiong received the bachelor’s degree in
automation from the University of Science and Tech-
nology of China, Hefei, China, and the Ph.D. degree
in computer science and engineering from Nanyang
Technological University, Singapore.

She has held a postdoctoral position at Dartmouth
College, Hanover, NH, USA, since July 2018. Her
research interests lie in optimization, machine learn-
ing, cybersecurity, and smart cities.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:29 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


