
1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

1

Generating Realistic Fake Equations in Order to
Reduce Intellectual Property Theft

Yanhai Xiong∗, Giridhar Kaushik Ramachandran†, Rajesh Ganesan†, Sushil Jajodia† and
V.S. Subrahmanian∗

∗ Dartmouth College, Hanover, NH 03755, USA
† George Mason University, Fairfax, VA 22030, USA

Abstract—According to Symantec, there average gap from the time a company is compromised by a zero-day attack to the time the
vulnerability is discovered is 312 days. This leaves an adversary with a lot of time to exfiltrate corporate IP. Recent work has suggested
automatically generating multiple fake versions of a document to impose costs on the attacker who needs to correctly identify the
original document from a set of mostly fake documents. But in the real world, documents contain many diverse components. In this
paper, we focus on technical documents that often contain equations. We present FEE (Fake Equation Engine), a framework to
generate fake equations in such documents. FEE tries to preserve multiple aspects of a given equation when generating a fake.
Moreover, FEE is very general and applies to diverse equational forms including polynomial equations, differential equations,
transcendental equations, and more. FEE iteratively solves a complex, changing optimization problem inside it. We also present
FEE-FAST, a fast approximate algorithm to solve the optimization problem within FEE. Using a panel of human subjects, we show that
FEE achieves a high rate in deceiving sophisticated subjects.

Index Terms—cybersecurity, intellectual property theft, deception

F

1 INTRODUCTION

According to research from Symantec [4], on average, there
is a gap of 312 days from the time a company is compro-
mised by a zero-day attack to the time the vulnerability is
detected. During this time, the attacker can easily steal a
huge amount of intellectual property.

As a compromised enterprise doesn’t even know they
have been compromised, there is a need for techniques
that automatically penalize the attacker by: delaying him,
increasing his level of frustration, adding financial costs,
and increasing his uncertainty. Recent work [22], [14], [18],
[5], [6] has suggested that for any given original document
d, we generate N fake versions of d such that it is hard
for the attacker to separate the original document from
the fakes. The fakes should be “similar enough” to the
original to make them credible to experts in the field, yet
“dissimilar enough” to make them likely to be wrong. The
attacker will need to spend time to identify the real one
— and even after making a decision, will be unsure about
whether he was right or wrong. Simply put, generating fake
documents deters attackers by imposing delays, financial
costs, frustration, and uncertainty on the attackers.

Past work in this relatively new area focuses on the
textual part ([22], [14], [5]) or tabular data ([18], [6]) in
a document. However, technical documents have many
components: diagrams, images, equations, tables, and more.
Equations are at the very heart of technical documents
because a small change in an equation can completely alter
its meaning and/or render it incorrectly. And finding errors
in complex equations is not always an easy task, especially
if the errors are subtle.

Manuscript received; revised.

In this paper, we focus on taking an equation that might
occur in a technical document and generating k fake ver-
sions of it so that the resulting fake equations are “similar
enough” to the original equation to be credible, but suffi-
ciently “dissimilar” to likely be wrong. However, equations
are not just pieces of syntax. An equation has a semantic
meaning. The equation y = 2x + 4 has a physical meaning
— it denotes a line in a 2-dimensional space with a slope of
2 and a y-intercept of 4. When we talk about one equation
being “similar” or “dissimilar” to another, this semantic
meaning should be taken into account. So should the form of
the equation (e.g. linear equation vs. differential equation),
universal truths (e.g. weight must exceed 0), and consistency
with other equations within the same document. Moreover,
the space of possible equations is enormous.

All of these factors make the generation of fake equa-
tions a very challenging task. In this paper, we propose a
novel system called FEE (Fake Equation Engine) with the
following characteristics:

1) FEE takes as input, a grammar which can capture
many different types of equations. FEE then modi-
fies equations by applying some edit operators, each
with a given cost.

2) However, FEE must generate fake equations that
satisfy various desired constraints — which at the
same time conflict with each other. We therefore
write FEE down as an iterative algorithm which in-
vokes a very non-traditional optimization problem
called FEE[OPT] within it. This optimization prob-
lem cannot be solved by a standard optimization
problem. Moreover, FEE[OPT] changes from one
iteration of FEE to the next and is very challenging

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

2

to solve.
3) We therefore develop a separate algorithm called

FEE-FAST that approximately solves this optimiza-
tion problem.

In all, FEE generates a desired set of k fake equations
for any given real equation. We tested FEE out on a panel
of 50 subjects on Amazon Mechanical Turk, each of who is
in the US and has a Master’s degree or higher. The subjects
were given 20 tasks, each of which involved identifying the
correct equation from a set of 11 equations (10 fake, one
real). We defined the notion of deception factor and show
that FEE achieves a high deception factor: most subjects
were effectively deceived by FEE even though a number
of conditions favored the subjects’ in their quest to find the
right equation.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a quick overview of related work. Section 3
presents the architecture of the overall FEE framework.
After this, Section 4 presents the form in which equations
are considered by FEE through context free grammars and
show that this syntax is enough to represent polynomial, dif-
ferential, and transcendental equations. Section 5 shows the
main contributions of the paper including the overall FEE
algorithm, the FEE[OPT] optimization problem, and the
FEE-FAST algorithm to solve FEE[OPT]. We then present
our experimental results in Section 6 after which we present
conclusions and future work.

2 RELATED WORK

The use of deception in warfare goes back many centuries
[16], [9]. In the context of cybersecurity, deception has pri-
marily been used by the attacker — for instance, phishing
attacks try to deceive a victim into downloading malware
or otherwise being compromised.

The use of cyber-deception [13] for defensive purposes is
newer. Issues such as piracy on the Internet (e.g. of videos)
[24], audio (e.g. music recordings) [15] and software code
[19] have led to the creation of a host of watermarking
and steganography techniques so that legitimate owners
of music or videos can show clear evidence of piracy. [20]
provides an excellent survey of methods to identify data
leakage from organizations using such methods.

One class of methods to protect technical documents
involve the creation of a “decoy” document [25], [23], [21].
[21] proposes Canary files. If the content of a canary file is
accessed or copied or deleted, then the system administrator
is immediately notified about the access. [23] mentions two
methods to generate honeyfiles with different levels of per-
mitted interaction. [25] uses honeyfiles to send alarms when
intrusions are detected. Such research on honeyfiles focus
on generating alarms when fake documents are touched.

In general, generating decoy technical documents in-
volve handling the fact that technical documents contain
diverse many constituent parts such as text, tables, graphs,
equations and flow-charts etc. [5] develops the FORGE
(Fake Online Repository Generation Engine) system in
which fake versions of the textual part of a document
are automatically generated using a mix of three methods:

natural language processing, multi-layered graph “meta-
centrality” measures, and optimization. [22] use word trans-
position and substitution based on parts of speech tagging
and pre-collected n-grams to generate fake text. [14] focuses
on increasing comprehension burden for attackers through
shuffling, deletion and addition of concepts. [18], [6] provide
methods for synthesizing fake tables for large data using
Generative Adversarial networks.

However, to date, there has been no work that we are
aware of that specifically tries to generate fake equations
that may occur within a technical document. An equation
is a model of some underlying phenomenon: for instance,
the famous e = mc2 is really a model that captures the
relationship between energy (e), mass (m) and the speed of
light (c). Equations are typically derived in one of two ways.
The equations could be derived from a body of data which
already exists (e.g. regression equations [3]). Alternatively,
the equations may constitute a theoretical model — and ex-
periments to gather data to validate the theoretical method
may be subsequently generated. This happens frequently
in physics. In this paper, we develop methods to deceive
attackers when they have access to the actual document
containing an equation but the paper itself doesn’t contain
the extensive data needed to support the equations in the
document (if in fact that data even exists). To the best of our
knowledge, there is no work on generating fake equations
under these conditions which are the widespread as far as
technical documents are concerned.

There are also efforts that focus on generating synthetic
structured datasets such as relational databases [6] and spe-
cialized data sets such as network traces [17]. Those are
important efforts that are orthogonal to ours.

Unlike the above efforts, we focus on manipulating
equations within the technical document. The FEE frame-
work we propose is based on context-free grammars [12]
and can automatically generate fake equations that are
“similar enough” to the original equation to be realistic,
yet “dissimilar enough” to the original equation to likely
be wrong.

3 FEE ARCHITECTURE

Figure 1 shows the architecture of the FEE framework.
The system takes as input, an original document with a
real equation. The goal is to generate a number of fake
documents, each with a fake version of this equation.

FEE contains a suite of context free grammars (CFGs)
that each try to parse the equation. Currently, we have de-
veloped CFGs for polynomial, differential, and transcenden-
tal equations. Each of the CFGs tries to parse the equation e
— as long as one of the CFGs accepts the equation, we can
generate fake versions of it.1 The creation of such CFGs is
easy and many example CFGs for different equational forms
already exist [1]. A rich body of work exists on recognizing
mathematical expressions from handwritten documents [10]
as well as from printed documents [2]. We therefore do not
delve deeply into this part of FEE in this paper.

1. If no CFG in the suite accepts an equation, then this means that the
equation is of a form different from those that we have considered in
the library. In such cases a new CFG must be created.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

3

Fig. 1. FEE architecture

Once an equation is parsed into its constituent parts
by one of the parsers in FEE, the FEE algorithm uses a
set of edit operators and a cost function to pose an opti-
mization problem that we call FEE[OPT]. This is a highly
non-traditional optimization problem which we solve using
the FEE-FAST algorithm. The main FEE algorithm involves
FEE-FAST iteratively — but in each iteration, a modified
version of the optimization problem is created and solved.
The algorithm finally outputs a set of k fake equations. The
novel contributions of this paper include the overall FEE
architecture as well as the FEE algorithm consisting of both
FEE[OPT] and FEE-FAST, together with the experiments
documenting their efficacy.

4 REPRESENTING AND MANIPULATING EQUA-
TIONS VIA CFGS

Though all readers are familiar with the intuitive concept of
an equation, we need to formally define the types of equa-
tions manipulated by the FEE framework. We use context-
free grammars or CFGs [12] in order to express equations.
We recall that a CFG G = (VG, TG, RG, SG) consists of 4
parts where VG is a set whose elements are called variable
symbols, TG is a set disjoint from VG whose elements are
called terminal symbols, RG is a finite set of “production
rules” (defined below) and SG ∈ VG is a distinguished
variable called the “start” variable for the grammar G.

A production rule is an expression of the form X → Y
where X ∈ VG is a variable and Y is a string (possibly
empty) constructed from the set (VG ∪ TG)?.2

Throughout this paper, we assume that any given equa-
tion is accepted by a grammar G in FEE’s repository of
grammars. We use G? to denote the set of all strings accepted
by grammar G.

Throughout this paper, we will use three grammars
G1,G2,G3 as running examples in order to illustrate the
definitions, concepts, and algorithms in the paper.

2. Given a set of production rules, it is common to denote the set of
all strings including the empty string generated by a set Σ of symbols
by Σ?.

Example 1 (Polynomial Equation Grammar G1). Suppose
VG is a set of variables, TG includes the set consisting
of some finite decimal numbers in set R as well as the
set X = {x1, . . . , xn} for some n, and some fixed set
O = O1 ∪ O2 of operations, where O1 = {()} is a set
of unary operations and O2 = {+,−,×,÷} is a set of
binary operations. In this case, our CFG might contain
the following production rules:

SG → V = V

V → t ∀t ∈ R ∪ X
V → V + V

V → V − V
V → V × V
V → V ÷ V
V → (V)

This grammar accepts all polynomial equations con-
taining the sole operators +,−,×,÷, (). The set of
equations accepted by this grammar therefore includes:
x1 = 3×x2− 4×x3 + 5×x4×x4 and x1 = 2÷ (x2 + 5)
etc. Of course, this grammar can be easily modified to
include other types of operators (e.g. exponentiation).

We also define terms that occur in any string accepted by
the grammar G as follows.
Definition 1 (Term). A term ŝ in a string s is a sub-string of s

(we use v to denote the subterm relationship, i.e. ŝ v s)
with length greater than 1 such that: (i) ŝ is accepted
by the grammar and (ii) ŝ contains at least one element
from X. Therefore, when ŝ v s, len(ŝ) > 1 and ŝ ∈ G?,
we have

• if ∃t ∈ X such that t @ ŝ, then ŝ is a term;
• if ŝ is a term, then ∀O ∈ O1, any O(ŝ) v s is a term;
• if ŝ is a term and V is a variable (as defined in

production rules of Example 1), then ∀O ∈ O2, any
O(ŝ, V) v s is a term and the same for O(V, ŝ) v s.

Thus, for the sample equation x1 = 3 × x2 − 4 × x3 + 5 ×
x4 × x4 which is accepted by the grammar G1, both 3 × x2

and 3× x2− 4× x3 are terms, but 3× x2− 4× is not a valid
term.
Example 2 (Differential Equation Grammar G2). Suppose

VG is a set of variables and TG is the union of the
sets R,X,O, where R is a set of finite decimal numbers,
X = {x1, . . . , xn} for some n and O = O1 ∪ O2 =
{+,−,×,÷, ∂/∂, ()} is some fixed set of operations. In
this case, the CFG includes following production rules:

SG → V = V

V → t ∀t ∈ R ∪ X
V → ∂V/∂V

V → V + V

V → V − V
V → V × V
V → V ÷ V
V → (V)

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

4

This grammar accepts all polynomial differential equa-
tions that involving the simple operators +,−,×,÷, ().
The set of equations accepted by this grammar includes
∂(y1 +x1×x1)/∂x1 = 3×x2 and ∂y1/∂(x1×x1 + 2) =
∂(∂y2/∂x1)/∂x2 +3×x1−y1 etc. In the case of the sam-
ple equation ∂(y1 +x1×x1)/∂x1 = 3×x2, y1 +x1×x1,
∂(y1 + x1 × x1)/∂x1 and 3× x2 are all valid terms.

Example 3 (Transcendental Equation Grammar G3). Sup-
pose VG is a set of variables, TG is the union set of
finite decimal numbers R, X = {x1, . . . , xn} for some
n, a set of unary and binary transcendental functions
F = {sin, cos, exp, loge, logn, }̂ and some fixed set of
operations O = O1 ∪ O2 = {+,−,×,÷, ()}. In this case,
the CFG includes the following production rules:

SG → V = V

V → t ∀t ∈ R ∪ X
V → fV ∀f ∈ F1

V → V fV ∀f ∈ F2

V → V + V

V → V − V
V → V × V
V → V ÷ V
V → (V)

Note that F = F1 ∪ F2, F1 is the set of unary tran-
scendental functions (sin, cos, exp etc.), while F2 is for
binary transcendental functions (e.g., {̂ }). This grammar
accepts all transcendental equations that involve tran-
scendental functions in the set F. The set of equations
accepted by this grammar includes sinx1 = exp(2 +
x3̂ (x2− 1)) and x1 = loge(x2×x2 + 1)÷ 2−x3 + 1 etc.
For the sample equation sinx1 = exp(2 + x3̂ (x2 − 1)),
some instances of terms are x3̂ (x2 − 1) and sinx1.

It is important to note that FEE currently contains only
these three grammars. However, grammars for other types
of equational forms can easily be added in a production
version of such a system. We now introduce edit operations
that modify equations.

Definition 2 (Edit Operator). An edit operator ρ is a mapping
from G? to G? such that for all s ∈ G?, ρ(s) ∈ G? is
identical to s in all places except one, i.e. if s = u1 · · ·um
and ρ(s) = v1 · · · vm, then it is the case that for all but
one 1 ≤ i ≤ m, ui = vi.

We assume that the FEE framework is given an arbi-
trary but fixed set of edit operators. In our examples, we
will assume a single family of edit operators — but we
emphasize that this is just one example of the types of edit
operators used in FEE. In our definitions, we assume that
TG is enumerated as t1, . . . , tk in some arbitrary but fixed
order.

Definition 3 (Edit Operator ρ). The edit operator ρti,j,tr (s)
replaces the j’th occurrences of ti in s by tr.

Though this may seem to be just one edit operator, it
is an exceedingly powerful one as it is parametrized by 3
parameters i, j, r.

Example 4. Let us return to Example 1 and let s be the
equation: x1 = 3× x2 − 4× x3 + 5× x4 × x4.
The result of applying the edit operator ρ3,1,8(s) is the
equation x1 = 8× x2 − 4× x3 + 5× x4 × x4.
The result of applying the edit operator ρ×,2,+(s) is x1 =
3× x2 − 4 + x3 + 5× x4 × x4.

We now illustrate the application of edit operators to differ-
ential equations.

Example 5. Let us return to Example 2 and let s be the
equation ∂(y1 + x1 × x1)/∂x1 = 3× x2.
The result of applying the edit opera-
tor ρ∂/∂(x1),1,∂/∂(x3+2)(s) is the equation
∂(y1 + x1 × x1)/∂(x3 + 2) = 3× x2.
The result of applying the edit operator ρ×,2,÷(s) is the
equation ∂(y1 + x1 × x1)/∂x1 = 3÷ x2.

The above example only shows two possible edit operators
for a simple differential equation. Of course, many others
are possible and FEE can work with any set of edit op-
erators that users may design. However, when designing
edit operators, one factor should be kept in mind: the ∂/∂
operator needs to specify the variable whose derivative is
being taken. We now show the edit operators applied to
transcendental equations.

Example 6. Let us return to Example 3 and let s be the
equation sinx1 = exp(2 + x3̂ (x2 − 1)).
The result of the edit operator ρ ,̂1,+(s) is the equation
sinx1 = exp(2 + x3 + (x2 − 1)).
The result of edit operator ρexp,1,loge

(s) is the equation
sinx1 = loge(2 + x3̂ (x2 − 1)).

The above example only denotes two possible edit op-
erators for a simple transcendental equation. While users
can design their own edit operators, one thing to note is
that: if ti is an operator, then tr should also be an operator
taking the same number of variables — otherwise a unary
operator may be replaced with a binary operator or vice-
versa, resulting in equations that are not accepted by the
CFG.

Definition 4 (Edit Sequence). An edit sequence is a finite
sequence of edit operations. The result of applying the
edit sequence e1, . . . , em to an equation s is given by
em(em−1(· · · e1(s) · · ·)).
Suppose eh = ρthi ,jh,thr . The above edit sequence is said
to be singular iff for all 1 ≤ u, v ≤ m such that u 6= v, it
is the case that (tui 6= tvi ∨ ju 6= jv).

Informally speaking, a singular edit sequence never contains
two edits of the same terminal symbol. There is no loss of
generality in restricting interest to singular edit sequences
because if two edits eu, ev are such that (tui = tvi ∧ ju = jv),
then the later of the two edits will generate the final result
which means that the first of the two edits in the sequence
can be deleted from the edit sequence without changing the
final result of applying the edit sequence.

Definition 5 (Cost Function). A cost function cost is a
mapping from edit operations to the set R+ of positive
real numbers.
Cost functions can be applied to edit sequences in the
obvious way by setting cost(e1, . . . , em) = Σmi=1cost(ei).

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

5

The cost of an operation is intended to capture the visual
difference between equations before and after the manipu-
lation operation is applied. We would like an equation with
the operation applied to be as similar as possible to what it
was like before — otherwise attackers might easily discover
that the equation (and hence the document it is in) is fake.
Our FEE system seeks to minimize these costs, subject to
generating fake equations sufficiently semantically different
from the original.

Overall Goal (Informal). The overall goal of the FEE
framework is the following: given an input equation E,
an integer k ≥ 1, a budget B > 0, and some “semantic
constraints”, find a set of k edit sequences es1, . . . , esk
such that Σki=1cost(esi)(E) ≤ B (i.e. the budget constraint
is satisfied) and such that a given objective function is
optimized.

However, we have thus far not defined two important
terms used in the above statement of the goal. First, every
equation has some semantics — for instance, the equation
y = 2 × x + 3 has a semantics, namely it describes the
straight line of slope 2 passing through the point (0, 3).
We cannot replace this equation with a “fake” equation
that is syntactically within the stated cost bounds if the
fake equation has a semantics that is dramatically different
because an adversary would be able to easily detect the fact
that the fake equation is a fake. However, a fake equation
that uses the straight line y = 1.9 × x + 3.3, on the other
hand, might be close enough semantically to the equation
y = 2 × x + 3. In addition, we want our system of fake
equations to be optimal in some sense. This sense could
include deviating sufficiently from the original equation to
be incorrect (so the adversary is faked out), but at the same
time being sufficiently similar to the original equation to not
obviously be a fake. Thus, the “quality” of a potential set of
fake equations needs to be evaluated in some way via an
objective function. These two points will be addressed in
the next section which will formally define the problem of
finding k fake equations as an optimization problem.
Example 7. Let us return to Example 4 with s being x1 =

3× x2− 4× x3 + 5× x4× x4. Without loss of generality,
we assume that the cost of each edit operator is 1.
Then the cost of the edit sequence es =
〈ρ3,1,8(s), ρ×,2,+(s)〉 is cost(es) = 2 and the resulting
fake equation is es(s) = x1 = 8×x2−4+x3+5×x4×x4.

Example 8. Let us return to Example 5 with s being ∂(y1 +
x1 × x1)/∂x1 = 3 × x2. Assume that the cost of editing
differential function is 2, otherwise 1.
Then the cost of the edit sequence es =
〈ρ∂/∂(x1),1,∂/∂(x3+2)(s), ρ×,2,÷(s)〉 is 3 and the equation
after edition is ∂(y1 + x1 × x1)/∂(x3 + 2) = 3÷ x2.

Example 9. Let us return to Example 6 with s being sinx1 =
exp(2 + x3̂ (x2 − 1)). Assume that the cost of editing
ti ∈ F is 2, otherwise 1.
Then the cost of the edit sequence es =
〈ρ ,̂1,+(s), ρexp,1,loge

(s)〉 is 4 and the new equation
is sinx1 = loge(2 + x3 + (x2 − 1)).

The examples of three kinds of equations shown above
demonstrate how edit sequences can change an equation
with an associated cost. Costs are inputs (provided by the
user) to the FEE framework.

5 FEE ALGORITHM

Given an equation E, integer k > 0 and budget B, we have
designed an iterative algorithm to find fake equations one
by one as shown in Algorithm 1.

FEE uses the two sets FE and ES respectively to
store the generated fake equations and corresponding edit
sequences (Line 1). FEE then proceeds iteratively till it
has found the desired number (k) of fake equations. In
each iteration, it formulates an optimization problem whose
minimal cost solution returns an edit sequence es /∈ ES
(Line 3). If this solution has a cost that fits within the overall
budget, then it is added to the set of fake equations FE
and the corresponding edit sequence is added to ES. Thus,
we solve FEE[OPT] repeatedly until k fake equations are
generated or the budget B is exhausted (Lines 2 - 8).

FEE’s Run-time. The run time of Algorithm 1 is O(kTP),
where k is the desired number of fake equations and TP is
the time required to solve FEE[OPT]. We will discuss TP
shortly.

In the rest of this section, we focus on the formulation of
the optimization problem FEE[OPT] which lies at the very
heart of the FEE algorithm.

Algorithm 1: FEE framework algorithm
Input: E, k, B
Output: FE

1 ES,FS ← ∅ // Initial set of edit sequences
ES and fake equations FE ;

2 while |ES| < k do
3 es, cost(es)← Solve FEE[OPT]// Get the

solution es with minimum cost(es) by
solving FEE[OPT] ;

4 if cost(es) +
∑

es′∈ES cost(es′) ≤ B then
5 ES ← ES ∪ {es}, FE ← FE ∪ {es(E)}
6 else
7 Print “Budget not sufficient to generate k fake

equations!”
8 break

5.1 FEE[OPT] Optimization Problem Formulation and
the FEE-FAST Algorithm
Recall from the definition of an edit operator ρti,j,tr on an
equation E that ti and tr are both from the finite set TG
and E is treated as a fixed-length string. Therefore, for any
equation E that we wish to generate fakes for, there exists
a set Θ(E) of edit operators. When E is clear from context,
we will write Θ instead of Θ(E).

We are interested in only singular edit sequences, i.e. for
all ρti,j,tr ∈ Θ with identical (ti, j) values, at most one of
them gets used in any edit sequence es. This assumption
leads to no loss of generality. Suppose Θ = {Θti,j}, where
each Θti,j = {ρti,j,tr} is the set of edit operators for
(ti, j) ∈ E. Thus, an edit sequence es can be represented
as a vector es = {kti,j}(ti,j)∈E , where kti,j is an integer in
the interval [0, |Θti,j |]. When kti,j = 0, es does not change
(ti, j). Otherwise, it uses the kti,jth element of the set Θti,j .

The goal of solving the optimization problem FEE[OPT]
is to find the best edit sequence es /∈ ES while minimizing
cost(es).

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

6

Before formally writing down the optimization problem
FEE[OPT], we note that we wish to generate fake equations
that will deceive the adversary. However, thus far, the
notion of edit operators and edit sequences do not consider
the semantics of the equations. If we ignore the semantics of
the equationE for which we are generating k fake equations
fe1, . . . , fek, it may become very easy for an adversary
to infer that fe1, . . . , fek are fake. For instance, suppose
we wish to generate just one fake version of the equation
y = 2× x+ 3. Replacing this with the equation y = 2 x̂+ 3
may be obtainable with a valid edit sequence, but because
this equation’s semantics is dramatically different from that
of the original, this may be easily detectable to an adversary.

Thus, the optimization problem needs to describe a set
of constraints that would achieve a user-specified desired
level of deception of the adversary and we describe some of
these constraints below.

1) Constraints pertaining to universal truths, Ctru: These
are constraints which examine whether any vari-
able in the equation contains any well-known phe-
nomenon and pertain to information from “univer-
sal truths” in common knowledge. For example, if
log 2×x1 with x1 representing the mass of an object
is in the equation E, then there is a corresponding
universal truth constraint which should eliminate
ess that would generate fake equations with com-
ponents like log−2×x1. Universal truth constraints
are also used to ensure that manipulated equations
continue to maintain the unit consistency in both
sides of the equation. For example, if the left hand
side of the equation is a mass value in kilograms,
the right side should also maintain the same unit.
We denote the set of ess that violate the universal
truth as ES ¯tru.

2) Constraints pertaining to the form of an equation Cnat:
An original equation can be one of many types
(e.g., polynomial, differential or transcendental).
This constraint specifies whether the nature of the
original equation should be maintained. These con-
straints can be taken into consideration while gen-
erating the set of edit operators Θ.

3) Constraints pertaining to metrics in model hypothesis,
Chyp: In the case where the original equation is a
model fitted on some given/inferrable dataset, the
hypothesis ϕ(E) (e.g., t−test) might be discussed.
The user may require that the new equation es(E)
also satisfies the hypothesis, i.e., ϕ(es(E)) ≥ ιϕ,
where ιϕ is a corresponding threshold (e.g., 5%
significance t−test value).

4) Constraints pertaining to model metrics, Cmet: In the
case that the original equation is a model fitted
on some given/inferrable dataset, the model met-
ric φ(E) (e.g., the coefficient of determination R2)
should not vary dramatically between the original
and the fake(s), i.e., |φ(E) − φ(es(E))| ≤ ιφ, for
some ιφ ≥ 0. When ιφ = 0, the fake model
would be required to have the same value of the
associated metric (e.g., coefficient of determination)
as the original model. In practice, the value of the
threshold ιφ that the metric can deviate by will be

set as a constraint by the system security officer who
manages the FEE framework.

5) Constraints pertaining to enough distance on model
prediction, Cprd: When the original equation is a
model fitted on some given/inferrable dataset, we
would like to protect the model prediction on
the whole variable space so that an adversary
who uses the fake equation receives erroneous re-
sults. We can therefore define a distance function
Dprd(E, es(E)) between the predictions of the two
equations E, es(E) and require the distance to fall
within a user-specified interval [L,U] in order to
ensure that the manipulated equation is distinct
from the original one, but still within a suitable user-
specified range.

6) Constraints pertaining to consistency with other occur-
rences of equation terms in the context, Ccss: While we
assume that only one equation is manipulated at
a time in this paper, a real world document may
contain multiple equations that depend upon each
other. We must therefore examine other occurrences
of the terms ŝ in the equation E and try to keep
the number of times there is an inconsistency with
other equations within a given user-specified range
that makes it hard for the adversary to identify the
equation es(E) as fake. It is also possible to set this
number to 0. We define Nvio(ŝ), the violation fre-
quency of a term to the number of other occurrences
of this term in the context if it is influenced by the
edit sequence, and set a max number Nmax

vio for the
equation es(E).

We are now finally in a position to present the formula-
tion of the optimization problem FEE[OPT].

FEE[OPT] mines/∈ES cost(es) (1)
s.t. es /∈ ES ¯tru (2)

ϕ(es(E)) ≥ ιϕ (3)
|φ(E)− φ(es(E))| ≤ ιφ (4)
Dprd(E, es(E)) ∈ [L,U] (5)∑

ŝvE:∃kti,j>0,∀(ti,j)∈ŝ

Nvio(ŝ) ≤ Nmax
vio (6)

Note that ES ¯tru denotes the set of ess that violate the uni-
versal truths of the equation E. The ∃kti,j > 0,∀(ti, j) ∈ ŝ
in the last constraint means that the term has been modified
by some edit operator of es.

In order to solve FEE[OPT], let us analyze the problem
step by step. First, this problem has a set of integer variables,
i.e., the kti,js in es indicating whether a given edit operator
(ti, j) is modified and if yes, which tr is used to replace
it. Suppose we define a constant cost for each edit operator
in Θ. Then the objective function would be linear w.r.t. the
costs of es. For constraints pertaining to universal truths (Equa-
tion (2)), it is reasonable to assume that there are a finite
number of natural truths for equation E. We therefore need
to derive the set ES ¯tru, which means that we must enumer-
ate and check all the possible edit sequences es /∈ ES. If the
equation E consists of Nt editable pairs (ti, j) (Nt ≤ |Θ|),
the complexity of deriving ES ¯tru is at least O(2Nt) and at
mostO(2|Θ|). When the equationE is a regression model, in

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

7

order to handle constraints (3), (4) and (5) , we need to first
transform equation es(E) from the string representation
to a mathematical representation, such that the required
calculations (w.r.t. hypothesis, metrics and predictions) can
be performed. However, to the best of our knowledge,
there is no direct transformation for equations from a string
expression to a mathematical expression. Instead, what we
can do is to design a function to realize it. This limitation
makes it impossible to directly solve the problem using
existing solvers and algorithms when constraints (3) —(5)
exist. Finally, for constraint (6), we first enumerate the set
of terms of equation E, get the number of other occurrences
for each term with the document context, then compute the
number of violations for each edit sequence and compare it
with the threshold.

Algorithm 2: FEE-FAST Approximate algorithm for
solving FEE[OPT]

Input: E,ES,Θ
Output: es

1 ES′ ← ∅ // Initialize the set of candidate
edit sequences

2 for each es /∈ ES do
3 if es(E) /∈ ES ¯tru then
4 ES′ ← ES′ ∪ {es}

5 ES′ ← {es′1, . . . , es′|ES′|} such that
cost(es′1) ≤ · · · ≤ cost(es′|ES′|) // Sort elements
of ES′ in ascending order according to
their costs

6 es = [] // Initialize the solution as an
empty vector

7 for l = 1 : |ES′| do // Loop starts from the
first element

8 Get the mathematical formulation of es′l(E)
9 if es′l(E) satisfies constraints (3), (4), (5) and (6) then

10 es← es′l
11 break

12 if es = [] then
13 Print “No eligible edit sequence exists!”

We now propose Algorithm 2 to solve the problem P. The
current set ES of selected edit sequences and the set Θ of
edit operators are inputs for the generation of the output
es, i.e., the best eligible (unused) edit sequence with the
lowest cost. First, the set ES′ of candidate edit sequences
is initialized to the empty set (Line 1). We then add each
edit sequence that obeys the universal truths to ES′ (Lines
2 - 4)3. The elements in ES′ are then sorted in ascending
order according to their costs (Line 5). We then initialize
the output es as an empty vector (Line 6) and check the
candidate edit sequences in ES′ one by one (Lines 7 -
11) until a satisfying one is found (Lines 9 - 11) or all
candidates are found to be ineligible (Lines 12 - 13). Note
that the cost function cost(·) is called only in Line 5 —
hence the correctness of our algorithm is not affected by the
complexity (or non-linearity) of the cost function. However
the run-time could be affected because cost(·) is not limited

3. In case the number of valid edit sequences is enormous, enumer-
ating the set ES′ is unrealistic. We then instead use genetic approaches
to generate edit sequences starting from the ones with lower costs.

at all in what it can be and hence a subroutine implementing
it could, in theory, be expensive.

Run-Time of FEE-FAST. The run time of Algorithm 2
is O(|ES′|), which means it depends on the number of
remaining eligible edit sequences. Users may use additional
steps to further constrain |ES′| in practice.

While the formulation of FEE[OPT] can vary a great
deal for different applications, the proposed framework can
always be adapted according to user specifications. In the
next section, we demonstrate how to apply FEE framework
under 3 distinct realistic circumstances and conduct a de-
tailed human evaluation on 20 different documents.

6 EXPERIMENTS

We collected a set of 20 patents ranging over diverse areas
that contained different kinds of equations. We then used
the FEE framework to generate 10 fake versions for one
equation from each document. We then invited a panel of
50 human subjects to identify the original correct equation.
Thus, each human subject was given 20 tasks with each task
containing 11 versions (10 fake, 1 real) of an equation.

To apply FEE on a document with a specific equation,
the process includes following steps:

Step 1 Decide the content of set TG and the initial set
of edit operators Θ;

Step 2 Check the constraints presented in Section 5.1,
reduce the set Θ and get constraints in the
FEE[OPT] optimization problem;

Step 3 Customize the hyper-parameters if needed, oth-
erwise use the default values;

Step 4 Run Algorithms 1 and 2 to generate the set FE
of fake equations.

While Steps 1 and 2 require human inputs, Steps 3 and 4
are fully automated. Note that the parameter setting in Step
3 is flexible as FEE system users can also define their own
parameters. Sections 6.1 and 6.2 demonstrate the process
and result of applying FEE each of the above steps for 2
representative documents with 2 different equations.

6.1 Linear Equation Manipulation
[8] presents a multiple linear regression model to estimate
the productivity of construction (i.e. building) operations
that use concrete. The linear regression model is fitted on a
set of data collected from a major civil engineering project.
The authors present some statistics for the data, as well as
hypotheses and metrics associated with their final model.
We select the linear equation E they use in their paper

Pactual = 1.31Tp + 1.75Va + 0.56Tn +

0.59W − 0.01Ct + 0.37Ln − 6.95

and try to generate fake versions of it.
Step 1: To start using FEE, we must first decide

TG = R ∪ O ∪ X of the grammar for this equation. Let
~c = {c1, ..., c7} denote the coefficient vector in equation
E. Considering that coefficients in ~c are all 2-decimal pos-
itive numbers, we set R as the set of all 2-decimal non-
negative numbers with upper bound maxi ci + σ~c = 9.36
and lower bound max(0,mini ci − σ~c) = 0.00, where σ~c

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

8

is the standard deviation of ~c. The reason for setting these
bounds is to limit how the coefficients are manipulated so
that the fake equations will not have unreasonably complex
coefficients. The operators are set to {+,−,×}, O as these
are the ones that appear in the equation. Furthermore,
X = {Pactual, Tp, Va, Tn,W,Ct, Ln}. To ensure ρti,j,tr (E) is
still an equation accepted by the grammar, the initial set Θ
of edit operators is

Θ = { ρti,j,tr : ti 6= tr & (ti, tr ∈ O || ti, tr ∈ R ∪ X) }

Step 2: Check each constraint presented in Section 5.1.
The discussion of each constraint is listed below.

1) Although all the elements in X are supposed to
be positive values, there is no need for universal
truth constraints because the edit operators will not
lead to any results with violations to these universal
truths.

2) For this example, suppose we would like to main-
tain a linear model as this is mentioned in the context
of the document. In this case, we only modify the
coefficients and the operators +,−. When a coeffi-
cient is changed to 0, it means the corresponding
variable is not considered in the linear model. Thus,
Θ is updated as follows:

Θ={ ρti,j,tr : ti 6= tr & (ti, tr ∈ {+,−} || ti, tr ∈ R)}

Note that the size of Θ is 9377 × 27.
3) t−test and F−test results are discussed in the paper.

To add corresponding constraints for these hypoth-
esis, we first generate synthetic data used for model
fitting with the statistics provided in the document
(details in Appendix A), then set corresponding
constraints for them.

4) As in the case of constraint 3, we set constraints for
model metrics R2 with synthetic data.

5) We derive a reasonable interval for each indepen-
dent variable in X − {Pactual}, then sample 1M
points in the united 6−dimensional space and eval-
uate the difference of model predictions on them.

6) The set of terms of the original equationE that occur
in the context of the document is empty.

Step 3: We set the cost of ρti,j,tr = |ti − tr| while ti, tr ∈
R; maxt1,t2∈R |t1 − t2| if ti, tr ∈ O. The intuition is that (1)
a larger difference in the value of a coefficient increases the
amount of visual difference and (2) changing the operator
basically changes the relationship between the independent
variable and Pactual, thus it can be more significant than
changing the value of a coefficient. Our goal is to generate
k = 10 fake equations with budget B = 60. The threshold
ιϕ is t(0.025; 192) and F (0.01, 8, 192) respectively for t−test
and F−test; ιφ = 0.03 for R2. We try different values for L
and U . Distance function Dprd takes the sum of absolute
distance of predictions on generated data points.

Step 4: We used R to develop the algorithm. Considering
that the variable space is enormous, instead of generate and
rank the set ES′ (Lines 1 to 5 of Algorithm 2), we directly
start searching from edit sequences with smaller costs.

6.1.1 Generated Fakes
We generated 10 fake equations as shown in Table 1 — we
only show the right hand side of the equations as all the left
hand sides are the same. The R2 of all generated equations
is in [0.769, 0.841] and the cost varies from 0.5 to 8.21.

6.2 Differential Equation Manipulation
[7] models gene expression using differential equations. This
paper includes analytical discussion rather than statistical
analysis for its equations. We take one differential equation
as the target E for which we wish to generate fakes:

d2r

dt2
= (−CUC−1 − V)

dr

dt
+ (−CUC−1V + CL)r

Step 1: We extract all the notations related to the
equation E to get the set TG = R ∪O ∪ X. The cur-
rent coefficients in E are all 1 and we get R =
{1, 2, 3}; O = {+,−,×, d/d, −1, T }, where −1, T are
inverse and transposition operators for matrices; X =
{t, ~r, ~p,~s, ~x,~λ, L, V, U,C,M}. To ensure that fake equations
are accepted by the grammar and still remain syntactically
valid differential equations, we initialize

Θ = { ρti,j,tr : ti 6= tr &

(ti, tr ∈ R ∪ X ||
ti, tr ∈ O1 = { −1, T } ||
ti, tr ∈ O2 = {d/d,+,−,×}) }

Step 2: Constraints 3 to 5 are not applicable. Other
constraints are:

1. The equation E involves a matrix, so we need
to keep the dimension of the matrices consistent.
From the document we get: vectors ~r, ~p,~s are
n−dimensional, ~x,~λ are 2n−dimensional, matri-
ces L, V, U,C are n × n−dimensional and M is
2n×2n−dimensional. Thus FEE should ensure that
the dimension of both sides of E is the same. To
achieve this, we build a function to check this for
es(E).

2. To ensure that the generated fake equation is still a
differential equation, we must ensure that at least one
differential operator remains in place after the edit. This
can be achieved by using the constraint ∃kd/d,j = 0.
There is no need to update Θ.

6. The set of terms with non-zero
number of other occurrences are:
{CUC−1,−CUC−1−V,CL,C−1V, (−CUC−1V +

CL)~r, d
2r
dt2 , (−CUC

−1 − V)drdt + (−CUC−1V +
CL)r}.

Step 3: We set the cost for all edit operators to the same
value 1 and generate k = 10 fake equations with budget
B = 50. The Nvio(ŝ) value for each term is 2, 1, 2, 3, 1, 1, 1
respectively. Nmax

vio is set as 10.
Step 4: We use Python to develop the algorithms and

find eligible fake equations.

6.2.1 Generated fakes
The FEE framework generated the 10 fake equations shown
in Table 2. The cost varies from 3 to 6. The corresponding
edit sequences are also listed in the table.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

9

TABLE 1
Right hand sides of fake equations with model metrics for Section 6.1. “Pactual =” is the left hand side of all the equations and hence is not shown

explicity in the table.

Fake Equation R2 F -stat Distance Cost Cost to R2

2.3924TP +0.0511Va -0.0796Tn +0.0394Ct -0.2651W -0.2008Ln +5.0218 0.840 170.525 114.253 0.50 1.68

1.7569TP +0.0561Va-0.1140Tn -0.0193Ct-0.2434W+ 0.3196Ln+ 8.8719 0.833 162.280 107.551 1.53 0.54

2.3150TP +0.0505Va -0.0723Tn +0.0300Ct -0.0079W -0.1714Ln +4.9161 0.841 172.240 110.632 4.96 0.17

2.3250TP +0.0525Va -0.0713Tn +0.0320Ct -0.0081W -0.1624Ln +4.9161 0.841 172.240 113.632 5.04 0.17

1.7456TP +0.0577Va-0.164Tn -0.0221Ct-0.2554W+ 0.3196Ln+ 8.8719 0.833 164.270 109.591 5.20 0.16

1.8480TP + 0.0563Va -0.0982Tn-0.0115Ct -0.0467W +0.1550Ln+7.8201 0.835 163.130 105.664 5.36 0.15

3.6712TP +0.0181Va+0.1642Tn+ 0.1373Ct +0.0050W -1.4549Ln -1.6103 0.769 106.830 124.24 6.18 0.12

2.5871TP +0.0382Va+0.0352Tn +0.0516Ct+0.0173W -0.5264Ln +3.7194 0.837 166.922 101.545 7.45 0.11

1.5208TP +0.0594Va -0.1411Tn -0.0339Ct -0.6544W+0.5576Ln+ 11.0711 0.792 120.601 153.775 7.74 0.10

2.3224TP +0.0512Va -0.0768Tn +0.0344Ct -0.2851W -0.2008Ln +5.0218 0.840 169.525 109.253 8.21 0.11

TABLE 2
Fake differential equations with their corresponding costs and edit sequences for Section 6.2.

Fake Equation Edit Sequence Cost
d2r
dt2

= (−CUC−1 − V −1) dr
dt

+ (−CUC−1 + V + CL)− r {ρV,1,V−1 ; ρ×,6,+; ρ×,8,−} 3
d2r
dt2

= (−CUL− V) dr
dt

+ (CUC−1 + V + CL)r {ρC−1,1,C ; ρ−,3,+; ρ×,6,+} 4
d2r
dt2

= (−CUC−1 − V) dr
dt

+ (−CUTV −1V + UL)r {ρU,2,UT ; ρC−1,2,V−1 ; ρC,3,U} 4

− d2r
dt2

= (−C + UC−1 − V) dr
dt

+ (−CUC−1 − V + CL)− r {ρ+,1,−; ρ×,1,+; ρ×,6,−; ρ×,8,−} 4

d2r
dt2

= (−CUC−1 − V −1) d2p
dt2

+ (−CUC−1V − CL)r {ρV,1,V−1 ; ρ+,3,−; ρ dr
dt

,1, d
2p

dt2

} 5

d2r
dt2

= (−CUC−1 − V) dr
dt

+ (−C−1UTC−1 + V + C + L)− r {ρC,2,C−1 ; ρU,2,UT ; ρ×,6,+; ρ×,7,+; ρ×,8,−} 5
d2r
dt2

= (−C − UC−1 − L−1) dr
dt

+ (−L−1UC−1V + CL)r {ρV,1,L−1 ; ρC,2,L−1 ; ρ×,1,−} 5
d2r
dt2

= (−CUU − V) dr
dt

+ (−CUCTV + CU)r {ρC−1,1,U ; ρL,1,U ; ρC−1,2,CT } 5
d2r
dt2

= (−CUC − V) d2s
dt2

+ (C + UC−1V + CL)r {ρC−1,1,C ; ρ dr
dt

,1, d
2s

dt2
; ρ×,4,+; ρ−,3,+} 6

d2r
dt2

= (−V −1UC−1 − C) dr
dt

+ (−CU + C−1V + CV −1)r {ρC,1,V−1 ; ρV,1,C ; ρL,1,V−1 ; ρ×,5,+} 6

6.3 Human Evaluation

As mentioned earlier, we selected 20 technical documents
on diverse topics. We selected one equation from each doc-
ument as the target equation for manipulation. The equation
length (which is denoted by the number of editable compo-
nents in the equation) varies from 8 to 34. We used FEE to
generate 10 fake equations per equation which were then
used to generate 10 fake documents. Thus, each of the fake
documents had exactly one fake equation in it — and the
subjects were told that. This gives them a potential advan-
tage in detecting fakes. For each original/fake document,
we show each subject 3 pages in all: the page on which the
equation occurs together with the immediately preceding
and immediately succeeding page. This gives the human
subject some context. Note that showing 3 pages surrounding
an equation biases the experiment in favor of the adversary by
providing him very valuable context in the form of text that the

FEE algorithm does not currently consider to modify.4

Our experiment involves 50 workers on Amazon Me-
chanical Turk (MTurk), all of whom are required to have
a Master’s degree or higher from the United States. Each
worker is asked to answer 20 questions in a randomized
order. Each question has 11 randomized choices and each
choice is a 3-page document. Exactly 1 of the 11 choices is
the original document. All workers were told that only one
equation in a fake document is fake (this is a tougher test
for our FEE system because the subjects know that they
only need to find one fake equation) and they are asked to
select the document they think is most likely to be fake, 2nd
most likely to be fake, and 3rd most likely. We name these
choices the 1st, 2nd and 3rd choice respectively.

Deception Rate of Hit@1. We define the Deception Rate as
the probability that the original document is not discovered
as the 1st choice when it is mixed with 10 generated fake

4. Combining FEE with a very robust paradigm for generating fake
textual content such as the FORGE system [5] is an important next step
that we propose to study in future work.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

10

versions. On average, this deception rate is 88.6%.
Distribution of Hit@1. Figure 2 shows the distribution of

Hit@1. For each human subject, we first calculate Hit@1 as
the number of times that the original document was selected
as their 1st choice. Hit@1 is a number between 0 through
20. We then plot Figure 2 with the above data. The x-axis
shows the number of documents (0 through 20) and the y-
axis shows the portion of workers whose 1st choice correctly
identified that amount of original documents. It is shown
that Hit@1 varies from 0 to 10. We fit the distribution with
a normal distribution and draw the probability distribution
function (PDF) curve in red. The average value of Hit@1
is 2.28 with a standard deviation 2.03. This means that on
average, each worker was only able to correctly get 2.28 real
documents in 20 guesses.

Deception Rate of Hit@1 + Hit@2. We also looked at
what happened when we considered a worker’s guess to be
correct if either his 1st or 2nd choice was correct. On average
and as expected (as we are more generous in accepting the
worker’s guess as correct in this case), the deception rate
decreases to 80.7% from 88.6% in the case of Hit@1.

Distribution of Hit@1 + Hit@2. Figure 3 shows the dis-
tribution of guesses by the 50 MTurk workers in the case
when we consider either their 1st or 2nd guess to be correct.
In this case, the number of correct selections varies from 0
to 12. The mean and standard deviation of Hit@1 +Hit@2
are respectively 3.86 and 2.55.

Deception Rate of Hit@1 + Hit@2 + Hit@3. We also
looked at what happened when we considered a worker’s
guess to be correct if one of his top-3 choices turned out to
be correct. The deception rate now falls to 70.9%.

Distribution of Hit@1 +Hit@2 +Hit@3. Considering all
the top-3 choices (i.e.,Hit@1+Hit@2+Hit@3), as shown in
Figure 4, the mean number of documents uncovered under
this very generous (to the adversary) setting is 5.82 with a
standard deviation equal to 2.85.

From the analysis in the above 3 cases, we can conclude
that FEE is able to deceive most adversaries. Furthermore,
FEE will be able to do an even better job in deceiving the
adversary if some of the following steps are followed.

1) We use publicly accessible patents as the original
documents in the human evaluation and there is
nothing that stops MTurk workers who have full
access to the Internet from searching for the correct
answer on the Internet. In practice, our proposed
approach would most probably be used to protect
private documents where adversaries cannot carry
out such a search.

2) We only alter one equation for each document in
the experiments. In practice, an operational system
would generate fake equations and text simultane-
ously, making it much harder for an adversary to
find inconsistencies between the two.

3) In the experiments, we truncate 3-pages from
patents with dozens of pages and clearly tell the
workers that only one equation is different among
different choices. However, attackers in real-world
scenarios will need to check the complete text of all
documents, real and fake, and they will not know
how many equations (or how much of the text) has
been faked.

Fig. 2. The number of original documents selected as the 1st choice

Fig. 3. The number of original documents selected by the first 2 choices

4) Finally, nothing prevents us from generating more
than 10 fakes per original document. As the number
of fake documents goes up, the probability that the
adversary will be able to find the real one goes
down.

Run-Time. All the fake equations in our experiments were
generated in under 5 seconds. As a consequence, we did
not run further run-time experiments as the fake equation
generation process is clearly fast enough for practical use.

Limitations. Though we selected technical documents
from several different fields to generate fake equations, this
breadth of equations comes at a price. We were not able
to select experts in the specific areas of those equations to

Fig. 4. The number of original documents selected by the first 3 choices

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

11

evaluate the quality of the fakes because selecting workers
with specialized areas of expertise (e.g., degrees in genetics)
on Amazon Mechanical Turk is not supported and is very
challenging. It is therefore possible that the deception rates
in this paper will go down a bit if true experts in the
discipline of an equation are used for evaluation.

An Important Note. An alert reader might wonder how a
legitimate user would distinguish a real document from one
containing a fake equation. This problem has been solved in
the FORGE system [5] which is why we do not discuss it in
detail here. In a nutshell, it is possible to embed a message
authenticating code in every document, both real and fake.
An authorized user with a private key will be able to use
his private key with the code in a document to determine
whether the document is real or fake.

7 USAGE OF FEE AND NEXT STEPS

We conclude by noting the big picture underlying FEE.
A technical document d may contain diverse forms

of content including text, tables, equations, formulas,
flowcharts, diagrams, and more. Generating a fake version
of d involves not only generating fake versions of each of
these types of content, but also ensuring that they are com-
bined together well. In past work [5], we have developed
methods to generate fake versions of the textual part of d as
well as the tables in d [6]. This effort shows how to generate
fake versions of equations. In work currently undergoing
a second round of review, we have proposed a unifying
framework to integrate these different types of fakes using
probabilistic logic graph [11].

Future steps revolve around generating fake versions of
flowcharts and diagrams so that a comprehensive method
to generate fake documents exists.

8 CONCLUSION

There has been considerable recent interest in addressing
the problem of intellectual property theft by automatically
generating multiple fake copies of every real document
that an organization wishes to protect from IP thieves. This
strategy imposes a cost on the adversary as s/he now needs
to figure out which of many exfiltrated documents is real
and which are fake.

Past work for the auto-generation of such fakes has
focused on the textual part of a document. However, techni-
cal documents have many constituent parts including text,
tables, equations, diagrams, and more. In this paper, we
develop the methods needed to automatically generate mul-
tiple fake equations. Moreover, our FEE framework ensures
that the semantics of the original equation is close enough
to the original to be believable, yet sufficiently far enough
to be likely to be wrong.

FEE uses a mechanism that iteratively solves an op-
timization problem in each iteration. However, the opti-
mization problems solved by FEE are not traditional op-
timization problems (e.g. integer linear programs, knapsack
problems, etc.). Rather, they involve a mix of numeric and
logical constraints. We present a specialized algorithm, FEE-
FAST, that solves these non-traditional optimization prob-
lems within each loop of FEE.

We have tested FEE out with a panel of 50 human
subjects on 20 real world patents and shown that FEE has a
high rate of deception, even when the subjects are provided
some advantages when compared to FEE.

Limitation: we need to manually pre-process the con-
straints before feeding it to the FEE framework.

9 ACKNOWLEDGEMENT

This work was supported in part by the Office of Naval
Research grants N00014-18-1-2670, N00014-16-1-2896, and
N00014-20-1-2407; and by the Army Research Office under
grant W911NF-13-1-0421.

REFERENCES

[1] M. M. R. Alavi Milani, S. Hosseinpour, and H. Pehlivan. Rule-
based production of mathematical expressions. Mathematics,
6(11):254, 2018.

[2] F. Álvaro, J.-A. Sánchez, and J.-M. Benedı́. Recognition of on-
line handwritten mathematical expressions using 2d stochastic
context-free grammars and hidden markov models. Pattern Recog-
nition Letters, 35:58–67, 2014.

[3] D. M. Bates and D. G. Watts. Nonlinear regression analysis and its
applications, volume 2. Wiley New York, 1988.

[4] L. Bilge and T. Dumitraş. Before we knew it: an empirical study of
zero-day attacks in the real world. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 833–844,
2012.

[5] T. Chakraborty, S. Jajodia, J. Katz, A. Picariello, G. Sperli, and V. S.
Subrahmanian. FORGE: A Fake Online Repository Generation
Engine for Cyber Deception. IEEE Transactions on Dependable and
Secure Computing, 2019.

[6] H. Chen, S. Jajodia, J. Liu, N. Park, V. Sokolov, and V. Subrahma-
nian. Faketables: using gans to generate functional dependency
preserving tables with bounded real data. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 2074–
2080. AAAI Press, 2019.

[7] T. Chen, H. L. He, and G. M. Church. Modeling gene expression
with differential equations. In Biocomputing’99, pages 29–40. World
Scientific, 1999.

[8] P. Dunlop and S. Smith. Estimating key characteristics of the
concrete delivery and placement process using linear regression
analysis. Civil Engineering and Environmental Systems, 20(4):273–
290, Dec. 2003.

[9] C. A. Fowler and R. F. Nesbit. Tactical deception in air-land
warfare. Journal of Electronic Defense, 18(6):37–45, 1995.

[10] U. Garain and B. B. Chaudhuri. Recognition of online handwritten
mathematical expressions. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 34(6):2366–2376, 2004.

[11] Q. Han, C. Molinaro, A. Picariello, G. Sperli, V. Subrahmanian,
and Y. Xiong. Generating fake documents using probabilistic logic
graphs. under review, 2020.

[12] J. E. Hopcroft and J. D. Ullman. Formal languages and their
relation to automata. 1969.

[13] S. Jajodia, N. Park, F. Pierazzi, A. Pugliese, E. Serra, G. I. Simari,
and V. Subrahmanian. A probabilistic logic of cyber deception.
IEEE Transactions on Information Forensics and Security, 12(11):2532–
2544, 2017.

[14] P. Karuna, H. Purohit, R. Ganesan, and S. Jajodia. Generating Hard
to Comprehend Fake Documents for Defensive Cyber Deception.
IEEE Intelligent Systems, 33(5):16–25, 2018.

[15] D. Kushner. Digital decoys [fake mp3 song files to deter music
pirating]. IEEE Spectrum, 40(5):27, 2003.

[16] C. L. Martin. Military deception reconsidered. Technical report,
NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2008.

[17] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and
M. Debbabi. Preserving both privacy and utility in network trace
anonymization. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 459–474, 2018.

[18] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and
Y. Kim. Data Synthesis based on Generative Adversarial Net-
works. Proceedings of the VLDB Endowment, 11(10):1071–1083, June
2018. arXiv: 1806.03384.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3038132, IEEE
Transactions on Dependable and Secure Computing

12

[19] Y. Park and S. J. Stolfo. Software decoys for insider threat. In
Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pages 93–94, 2012.

[20] A. Shabtai, Y. Elovici, and L. Rokach. A survey of data leakage
detection and prevention solutions. Springer Science & Business
Media, 2012.

[21] B. Whitham. Automating the generation of fake documents to
detect network intruders. International Journal of Cyber-Security and
Digital Forensics, 2(1):103, 2013.

[22] B. Whitham. Automating the generation of enticing text content
for high-interaction honeyfiles. In Proceedings of the 50th Hawaii
International Conference on System Sciences, 2017.

[23] B. Whitham, T. Turner, and L. Brown. Automated processes for
evaluating the realism of high-interaction honeyfiles. In Proceed-
ings of the 14th European Conference on Cyber Warfare and Security,
page 307, 2015.

[24] C. Yang, Z. Wang, X. Zhu, C. Huang, J. Shi, and D. Lin. Pose
guided human video generation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 201–216, 2018.

[25] J. Yuill, M. Zappe, D. Denning, and F. Feer. Honeyfiles: deceptive
files for intrusion detection. In Proceedings from the Fifth Annual
IEEE SMC Information Assurance Workshop, 2004., pages 116–122.
IEEE, 2004.

Yanhai Xiong is a Postdoc working in Dartmouth
College since July, 2018. She received her PhD
degree in Computer Science and Engineering
from Nanyang Technological University, Singa-
pore and the Bachelor degree in Automation
from University of Science and Technological
University of China. Her research interests lie
in optimization, machine learning, cybersecurity
and smart cities.

Giridhar Kaushik Ramachandran is currently
a doctoral researcher in Information Sciences
and Technology at George Mason University.
He received his Bachelor of Science Honors
degree in Mathematics in 2012 and Master in
Business Administration degree in 2014 from the
Sri Sathya Sai Institute of Higher Learning, India.
He has over 4 years of diverse experience as
a data scientist in the fields of finance, human
resource management and education. He is in-
terested in the applications of machine learning,

optimization and statistics in cybersecurity, health and social media.

Rajesh Ganesan received the M.S. degree in
industrial engineering, the M.A. degree in math-
ematics, and the Ph.D. degree in industrial en-
gineering from the University of South Florida,
Tampa, FL, USA, in 2002, 2005, and 2005, re-
spectively. He is currently an Associate Profes-
sor of systems engineering and operations re-
search with George Mason University, Fairfax,
VA, USA, where he is with the Center for Se-
cure Information Systems and the Center for Air
Transportation Systems Research. His research

interests include stochastic optimization (approximate dynamic pro-
gramming), Bigdata analytics, multiscale statistical data analysis using
wavelets, and engineering education. His research applications include
cybersecurity, healthcare, defense, air transportation, and nanomanu-
facturing. Dr. Ganesan is a Senior Member of the Institution of Industrial
Engineers and a member of the American Society for Engineering
Education and INFORMS professional organization.

Sushil Jajodia is University Professor, BDM In-
ternational Professor, and the founding director
of Center for Secure Information Systems in the
Volgenau School of Engineering at the George
Mason University, Fairfax, Virginia. He is also the
director of the NSF I/UCRC Center for Cyberse-
curity Analytics and Automation (now in Phase
II). Before coming to Mason, he held permanent
positions at the National Science Foundation;
Naval Research Laboratory, Washington; and
University of Missouri, Columbia. He has also

been a visiting professor at the University of Milan, Sapienza University
of Rome, Cambridge University, King’s College London, Paris Dauphine
University, and Imperial College. Dr. Jajodia received his PhD from
the University of Oregon, Eugene. His research interests include se-
curity, privacy, databases, and distributed systems. He has authored or
coauthored seven books, edited 52 books and conference proceedings,
and published more than 500 technical papers in the refereed journals
and conference proceedings. Five of his books have been translated in
Chinese. He is also a holder of 23 patents. His current research spon-
sors are the Army Research Office, Office of Naval Research, National
Security Agency, National Science Foundation, Northrop Grumman
Corporation, and Intelligent Automation, Inc. Dr. Jajodia was elected
a fellow of IEEE in January, 2013. He received the 1996 IFIP TC
11 Kristian Beckman award, 2000 Volgenau School of Engineering
Outstanding Research Faculty Award, 2008 ACM SIGSAC Outstanding
Contributions Award, 2011 IFIP WG 11.3 Outstanding Research Con-
tributions Award, 2015 ESORICS Outstanding Research Award, 2016
Federal Information Systems Security Educators Association (FISSEA)
Educator of the Year Award, 2016 IEEE Computer Society Technical
Achievement Award, and 2020 IEEE Computer Society W. Wallace
McDowell Award. He was recognized for the most accepted papers at
the 30th anniversary of the IEEE Symposium on Security and Privacy.
His h-index is 105 and Erdos number is 2. The URL for his web page is
http://csis.gmu.edu/jajodia.

V.S. Subrahmanian is the Dartmouth College
Distinguished Professor in Cybersecurity, Tech-
nology, and Society and Director of the Institute
for Security, Technology, and Society at Dart-
mouth. He previously served as a Professor of
Computer Science at the University of Maryland
from 1989-2017 where he created and headed
both the Lab for Computational Cultural Dynam-
ics and the Center for Digital International Gov-
ernment. He also served for 6+ years as Director
of the University of Marylands Institute for Ad-

vanced Computer Studies. Prof. Subrahmanian is an expert on big data
analytics including methods to analyze text/geospatial/relational/social
network data, learn behavioral models from the data, forecast actions,
and influence behaviors with applications to cybersecurity and countert-
errorism. He has written five books, edited ten, and published over 300
refereed articles. He is a Fellow of the American Association for the
Advancement of Science and the Association for the Advancement of
Artificial Intelligence and received numerous other honors and awards.
His work has been featured in numerous outlets such as the Baltimore
Sun, the Economist, Science, Nature, the Washington Post, American
Public Media. He serves on the editorial boards of numerous journals
including Science, the Board of Directors of the Development Gateway
Foundation (set up by the World Bank), SentiMetrix, Inc., and on the
Research Advisory Board of Tata Consultancy Services. He previously
served on DARPAs Executive Advisory Council on Advanced Logistics
and as an ad-hoc member of the US Air Force Science Advisory Board.
Homepage: http://home.cs.dartmouth.edu/ vs/

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:07:06 UTC from IEEE Xplore. Restrictions apply.

