
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 3511

Android Malware Detection via (Somewhat) Robust
Irreversible Feature Transformations

Qian Han , V. S. Subrahmanian , and Yanhai Xiong

Abstract— As the most widely used OS on earth, Android is
heavily targeted by malicious hackers. Though much work has
been done on detecting Android malware, hackers are becoming
increasingly adept at evading ML classifiers. We develop FARM,
a Feature transformation based AndRoid Malware detector.
FARM takes well-known features for Android malware detection
and introduces three new types of feature transformations that
transform these features irreversibly into a new feature domain.
We first test FARM on 6 Android classification problems separat-
ing goodware and “other malware” from 3 classes of malware:
rooting malware, spyware, and banking trojans. We show that
FARM beats standard baselines when no attacks occur. Though
we cannot guess all possible attacks that an adversary might use,
we propose three realistic attacks on FARM and show that FARM
is very robust to these attacks in all classification problems.
Additionally, FARM has automatically identified two malware
samples which were not previously classified as rooting malware
by any of the 61 anti-viruses on VirusTotal. These samples were
reported to Google’s Android Security Team who subsequently
confirmed our findings.

Index Terms— Android, machine learning, feature transfor-
mation, malware detection, spyware, Banking Trojans, rooting
malware.

I. INTRODUCTION

THE Android platform is the most widely used operating
system in the world today [24].1 Because it is both very

popular and open source, it is subject to a wide variety of
attacks [1]–[3] involving theft of credentials, bank fraud, click
fraud, ransomware, adware, SMS fraud, and more.

While there has been extensive work on Android malware
analysis and detection, [7], [12], [13], [15], [21], [38], [40], we
know that when a malware is detected by anti-virus vendors
or white hats, the malicious hackers involved try to evade the
signature. Though no one can predict all the ingenious evasion
methods that malicious hackers might come up with in the
future, it is important that malware detectors try to be robust
to evasion methods.

We propose FARM (short for Feature transformation based
AndRoid Malware detector), a framework for detecting
Android Rooting Malware which is robust to certain types

Manuscript received July 5, 2019; revised November 29, 2019 and
January 27, 2020; accepted February 6, 2020. Date of publication
February 26, 2020; date of current version June 26, 2020. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Wei Yu. (Corresponding author: V. S. Subrahmanian.)

The authors are with the Department of Computer Science, Institute
for Security Technology and Society, Dartmouth College, Hanover, NH
03755 USA (e-mail: vs@dartmouth.edu).

Digital Object Identifier 10.1109/TIFS.2020.2975932
1https://www.c-sharpcorner.com/article/what-is-the-most-popular-operating-

system/

of attacks that we might expect malicious hackers to try
out. Given a set of standard features used in the literature
for Android malware prediction in general, our first major
contribution is a set of three new and broad classes of feature
transformations that irreversibly map the original feature space
into a new feature space.

• Landmark based transformations. Our first class of fea-
ture transformations is based on the idea of landmarks.
The basic idea is similar to triangulation: every point
in the original feature space can be characterized by
its distance from a given set of landmarks. Because the
selection of distance functions and landmark points is
flexible, this is not one transformation, but an entire class
of transformations. The adversary will have difficulty
figuring out what a specific implementation of FARM
is doing, even if they know all the original features.

• Feature clustering based transformations. Our second
innovation is a class of transforms that clusters sets
of similar features together by inspecting the original
features. If two features have similar values in the original
training data, then those two features should end up in
the same cluster. Each cluster of features generates a new
feature (one per cluster) having a value computed from
the feature values in that cluster. This too is not one trans-
formation, but a class of transformations because FARM
can use one of any number of clustering algorithms and
pick whatever reasonable hyper-parameters it feels are
appropriate for that clustering algorithm. This is also hard
for an adversary to guess, even if they know the entire
training set.

• Correlation graph based transformations. This is an idea
similar to that above. The original features in the training
data end up as nodes in an undirected graph. An edge
linking two features is weighted by a selected correlation
coefficient (e.g. Pearson’s correlation coefficient). The
features are then clustered together and each feature-
cluster corresponds to a new feature in a manner similar
to that in the preceding transformation.

Our second major contribution is an extensive set of exper-
iments that combine the transformed features with standard
classifiers and a late fusion step. Specifically, we test the
FARM approach on 6 Android malware classification prob-
lems: (i) rooting apps vs. goodware, (ii) rooting apps vs. other
malware, (iii) spyware vs. goodware, (iv) spyware vs. other
malware, (v) banking trojans vs. goodware, and (vi) banking
trojans vs. other malware. Each of the 6 Android malware
classification problems is tested on two types of data: one

1556-6013 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4583-7598
https://orcid.org/0000-0001-7191-0296

3512 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE I

PERCENTAGE IMPROVEMENT OF FARM OVER THE
BEST BASELINE ON F1-SCORE

where no samples in the data are isomorphic, and another
where only one copy of isomorphic samples is retained in the
data.2 Thus, in total, there are 12 sets of experiments that we
conduct to assess the performance of FARM.

When no attacks are present, our 10-fold cross-validation
experiments show that FARM achieves an improvement in
the F1-score of 1.05-6.43% over the baseline classifiers. The
percentage improvement3 of FARM vs. the best baseline is
summarized in Table I. This suggests that in the absence of
attacks, FARM outperforms strong baselines – though not by
a huge margin.

However, when certain types of attacks on classifiers occur,
FARM strongly outperforms the baselines, yielding our third
major contribution. Malicious hackers continuously look for
methods to evade FARM. We propose three potential attacks
and evaluate the robustness of FARM w.r.t. these attacks. Our
10-fold cross-validation experiments show that FARM is more
robust in the face of these attacks than past work.4 An impact
score less than 1 says that FARM is more robust against
the attack than the baselines. The smaller the impact score,
the better. Moreover, for example, an impact score of 0.2 under
a given attack says that the adverse impact on FARM is 20%
of the adverse impact on the baseline, i.e. FARM is 5 times
more resilient than the baseline. We see in Tables VI and VII
that the impact score of FARM under the first two attacks
is consistently lower than 1. This is also the case with the
third kind of attack (Table VIII). Here, it is worth noting
that the impact score of FARM actually goes into negative
territory, suggesting that FARM actually performs better under
the third type of attack than when there is no attack. This is
counter-intuitive and we will discuss why later in Section VI.
Tables VI, VII and VIII below respectively show the impact of
the three types of attacks on all 12 problems in the case of the
baseline vs. FARM. We see that FARM is often many times

2Two Android samples are considered isomorphic if they have the same
feature vector.

3Percentage improvement of FARM over the best baseline for classification
problem ℘ is given by the formula F1(FARM)

F1(Baseline) − 1.

4The impact score of attack a on FARM is given by Red F1(FARM,a)
Red F1(baseline,a)

where Red F1(Alg, a) is the reduction in F1 score of algo-
rithm Alg when the attack a happens, i.e. Red F1(Alg, a) =
F1Score(Alg, no attack) − F1Score(Alg, attack a)

Fig. 1. The FARM Framework.

better than the baseline in all of these cases. On the first type of
attack, we see that impact score of FARM is between 10.47%
to 72.12%, i.e. FARM varies may be up to almost 10 times
more resilient to this attack than the baseline. On the second
type of attack, FARM’s impact score varies from 10.25% to
74.42%, showing almost a similar range of greater robustness
than the baseline. On the third type of attack, FARM’s impact
score ranges from -3.9 to +6.14, suggesting the FARM, while
often much more robust, is not always more robust. Overall,
of the 36 situations tested (12 times 3 tables), FARM’s superior
robustness was established in 35 of 36 cases. That said, we do
not claim that FARM is robust against all kinds of attacks -
just the three types of attacks proposed in this paper.

Finally, we note that FARM has found 2 malware samples
that were previously not known to be rooting malware to
any of the 61 anti-virus engines on VirusTotal (as well as to
Google). We reported these two samples to Google’s Android
Security team who confirmed the findings.

Figure 1 shows the architecture of the FARM framework
— this paper is organized in a manner that is consistent with
this architecture. Section II discusses related work on Android
malware detection. Our FARM dataset consisting of Android
goodware, rooting malware, spyware, banking trojans, and
other malware is discussed in Section III. As we build on
top of basic features used in other work, we only provide a
brief description of those in Section IV. Section V contains a
comprehensive description of the three feature transformation
techniques (landmark features, feature clustering features, cor-
relation graph features) used in this paper. Experimental results
are presented and discussed in Section VI.

II. RELATED WORK

We discuss 2 types of related work: work on Android mal-
ware detection in general, and work on feature transformation
techniques for machine learning.

A. Literature on General Android malware Detection
Techniques

We discuss two categories of related work here: (i) static
analysis based detection of known malicious patterns in source
code and other relevant metadata, and (ii) dynamic analysis
which tests an Android APK by executing it in real-time
and monitoring the results. Previous examples of malware
detection solutions include MaMaDroid [26], SigPID [21],
MADAM [31], the deep android malware detection sys-
tem [27], Hindroid [17], DREBIN [7], DroidAPIMiner [4],
CrowDroid [11], DroidScope [39] and MARVIN [23].

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: ANDROID MALWARE DETECTION VIA (SOMEWHAT) ROBUST IRREVERSIBLE FEATURE TRANSFORMATIONS 3513

1) Static Analysis: DREBIN [7] and DroidAPIMiner [4]
use lightweight features based on static analysis to distinguish
Android malware. DREBIN detects 94% of the malware with
a low false positive rate while DroidAPIMiner achieves 99%
accuracy and 2.2% false positive rate. MaMaDroid [26] builds
a classifier to detect malware based on features extracted from
a behavioral model in the form of a Markov chain capturing
the sequence of API calls performed by an APK. [35] provides
a systematic study of permission-induced risk in APKs. Their
results show that with the top 40 risky permissions, the detec-
tion rate with Random Forest reaches 0.9462 with a false pos-
itive rate of 0.006. SigPID [21] develops methods to identify
significant permissions related to Android malware prediction.
They show that only 22 out of 135 permissions are needed
to achieve over 90% detection accuracy. Reference [27] uses
static analysis and convolutional neural networks to separate
Android malware from goodware. Hindroid [17] develops a
heterogeneous information network and then uses meta-path
analysis to predict if a sample is benign or malicious. [12]
develops a regression model based on decompiled code analy-
sis to distinguish malware and goodware. Reference [42]
proposes an end-to-end method for automatic feature engi-
neering by mining documents written in natural language. The
results achieve a 92.5% true positive rate with only 1% false
positive rate, which is comparable to the detectors based on
manually engineered features. Reference [33] detects repack-
aged Android malware via code heterogeneity analysis. They
partition the code into multiple dependence-based regions and
each region is classified independently based on behavioral
features. Reference [22] performs Android malware family
clustering efficiently with novel malicious payload mining
techniques.

2) Dynamic Analysis: CrowDroid [11] detects malicious
applications that have benign names and versions. It also
collects and compares execution traces from users using a
crowdsourcing approach. DroidScope [39] analyses APKs that
collect native, Dalvik instruction traces and profiles API-
level activity. It also tracks information leakage through
taint analysis. MARVIN [23] uses machine learning to dis-
tinguish between goodware and malware with static and
dynamic analysis, achieving a detection accuracy of 98.24%.
MADAM [31] develops methods using features at four levels:
kernel, application, user and package levels to detect malicious
behaviors, achieving over 96% accuracy and a low false
positive rate. DroidTrace [41] implements a dynamic analysis
system by using ptrace to monitor the selected system calls
of the target process, then executing classification according
to their sequence. Reference [28] develops AuntieDroid based
on MaMaDroid and Chimp [5] (a crowdsourced method) to
detect malware with both static and dynamic analysis, yielding
F-measure of 0.92. XManDroid [10] examines the use of
transitive permissions in Android’s inter-process communica-
tion protocol in order to detect privilege escalation attacks.
Reference [38] describes the Pileup vulnerability using which
malware can declare a set of privileges and attributes in an
older version of the operating system until the system is
updated to a newer version. They show that attackers can
attack thousands of devices from different manufacturers,

carriers, and countries. They develop a detector that scans
devices to capture exploits based on the Pileup vulnerability.
RootExplorer [15] studies the challenging problem of finding
root exploits in a different way. They consider the fact that
there are now commercial grade “root providers” [40] includ-
ing major corporations such as Tencent, Baidu, and Qihoo
who provide this as a service so naive users can take certain
actions that require root privileges such as removing bloatware.
Well-known Android malware guru Romain Unuchek points
out that “Users rooting their own devices offer quite a gift
to malware developers” [34] as malicious hackers can use the
code provided by root providers to launch attacks. RootEx-
plorer looks at root exploits provided by such “root providers”
and tries to detect them effectively. Although not aimed for
malware detection, we note that CopperDroid [32] designs
an automatic virtual machine introspection based dynamic
analysis system to reconstruct the OS and Android-specific
behaviors of Android malware which could be leveraged for
malware detection.

FARM differs from these prior malware detection efforts
in two broad respects: first, FARM focuses on developing a
method for malware detection that is robust in the presence
of various types of attacks while the above efforts do not
(with the exception of [8]. Additionally, FARM looks at
12 classification problems in all spanning 3 different types
of Android malware (rooting malware, spyware, and banking
trojans). FARM develops 3 novel feature transformations for
these purposes and shows that these feature transformations
lead to greater robustness under certain types of adversarial
attacks.

To evaluate the robustness of the proposed feature transfor-
mation techniques, we also investigated related literature on
attacks on defensive methods. Reference [8] studies behaviors
of defenses relying on obfuscated gradients and how they
can be circumvented. The partition method is used by [25]
to replace a piece of malware with a number of “shallow
processes” to evade detection by system-call behavior based
detectors. Reference [30] use common obfuscation methods
to generate attack malware samples. [18]’s MalGAN system
generates malware samples from a single feature vector.
In particular, they add irrelevant features to avoid detection
of the original malware. Reference [16] selects features via
optimization and adds them to malware samples as a kind
of attack. FARM use three attack models to modify malware
samples.

B. Literature on Feature Transformation Techniques for
Machine Learning

Most work on feature transformation applies feature trans-
formation techniques to reduce computational complexity or
improve object recognition accuracy. At the very outset,
we note that we are not aware of any efforts to use feature
transformation for Android malware prediction, nor are we
aware of any feature transformation efforts directed at evading
malware variants.

Reference [29] evaluates the use of PCA-based feature
transformation and shows that in some cases, it can yield better

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

3514 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE II

DATASET DESCRIPTION

performance than feature selection. Reference [36] proposes an
adaptive conformal transformation (ACT) algorithm in order
to achieve better classification results when training data is
imbalanced. Cognito [20] proposes the use of transforma-
tion trees for improved feature engineering. Reference [6]
provides evidence to show that feature transformation may
lead to improved predictive accuracy. Reference [19] designs
an incremental matrix factorization framework using a linear
feature transformation of user and item latent vectors, showing
a relatively high accuracy and space-efficient training process
in an online scenario. Reference [37] proposes a convex
radius-margin-based SVM model for joint learning of feature
transformation and an SVM classifier, and shows that it
outperforms both classical SVM and some advanced SVM-
based methods. [14] presents a novel semi-supervised learning
framework to improve visual classification performance using
a sequence of feature transformations.

In contrast to past work on feature transformations, FARM
proposes three entirely new classes of feature transformation
techniques that can be widely adapted for different machine
learning models. In addition, FARM introduces very realistic
potential attacks by adversaries and shows that it is robust to
these attacks — past work on feature transformations do not
present any insights on adversarial evasion.

III. THE FARM DATASET

In this section, we briefly introduce the FARM dataset which
consists of a mix of Android goodware, rooting malware,
spyware, banking trojans, and other malware. For a sample
to be tagged in one of these malware categories, we required
that there be at least 2 reports on Koodous5 confirming this
status. Table II summarizes the statistics of the FARM dataset.

We say that two APKs are isomorphic if they have the same
set of API features. While the description of the “standard”
features used by us appears in the next section, we note
that using isomorphic samples for 10-fold cross-validation
is fundamentally wrong because two malware samples (with
different hashes) may end up with the same feature vectors.
If one of these is in the training set and one in the valida-
tion set, then the testing protocol is severely compromised
and will inflate the predictive accuracy results. We therefore
have two versions of our dataset: the No-Isomorphic version
has no isomorphic samples in it, while the With-Isomorphic
dataset allows the isomorphic samples to persist. We report
our main experimental results on both versions of the FARM

5https://koodous.com/

dataset for the sake of completeness and clarity. We asked a
few cybersecurity experts why the number of malware samples
that are isomorphic is so large. The reason seems to be that
malware developers build a piece of malware and deploy
it - but at some point in time, cybersecurity firms develop
signatures to detect it. At this point, the malware developer
usually tweaks his malware slightly to evade the signature,
and then the cybersecurity firm tweaks its signature. This
process keeps iterating many times – at least for profitable
malware samples – thus leading to many malware samples
with identical feature vectors.

IV. BASIC FEATURES

As the “basic features” associated with Android APKs are
not a contribution of this paper and are derived from past
work [9], [13], we describe them very briefly here.6 The basic
features fall into 3 categories.

A. Static Features

We use Androguard to extract 120 static features such as
APK size, developer information, statistics (on the number of
activities, message receivers, providers and functionalities,)
and one-hot encoded permission features.

B. API Package Call Features

We also consider a recent class of lightweight API-
based package-level static features introduced in 2019 [9].
In the Android system, API packages contain one or more
API classes. API packages may interact with the operat-
ing system and provide basic communication services, e.g.,
android.os provides basic operating system services, mes-
sage passing and internal communication between processes
on the device. Figure 2 illustrates the relationship between
API packages, API classes, and API methods. For example,
API package android.os contains API class android.os.Debug,
android.os.Message and android.os.UserManager, etc. Simi-
larly, each API class contains one or more API methods. As in
the case of [9], FARM has features that capture the frequency
with which an API class in a given API package was called. We
do not consider API method call frequencies because it these
frequencies are very expensive to compute in terms of time at
the method level - in contrast, the package level computations
are relatively fast.

C. Dynamic Features

We use Koodous’ Cuckoo and Droidbox based analysis
to extract 767 dynamic features including: files written, files
read, DNS connected, crypto usage, SMS activities, phonecall
activities, library activities, dex calls, etc. We extract the
statistics of these features (e.g., the total number of times
crypto operators are used) and also construct a one-hot coding
for categorical features.

6A complete description of the basic features used can be viewed
at https://docs.google.com/spreadsheets/d/1StlowS2Zm25MtLsx_xIvfdqZiyYr
b2_f1TVVKVkrV1I/edit?usp=sharing

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: ANDROID MALWARE DETECTION VIA (SOMEWHAT) ROBUST IRREVERSIBLE FEATURE TRANSFORMATIONS 3515

Fig. 2. Android API Package call features illustration.

FARM contains 171 API package call features — and in
all, FARM associates a 1058-dimensional feature vector with
each APK. We call this the “basic feature vector” of an APK.
Training Set. Throughout this paper, we assume a training
set consisting of m APKs with feature vectors f1, . . . , fm

respectively. We assume that there are n basic features in all
and hence we can represent the feature vectors as a feature
table F = { fi j }1≤i≤m,1≤ j≤n where the rows correspond to
feature vectors of APKs and each column corresponds to a
feature. Of course, for each of the 12 classification problems
we study in this paper, each APK i has an associated class
yi ∈ {0, 1}. So when we look at the problem of separating
rooting malware from goodware, we set yi = 0 to mean that
sample i is goodware, while yi = 1 means it is a rooting
app. When we look at the problem of separating spyware from
goodware, we set yi = 0 to mean that sample i is goodware,
while yi = 1 means it is spyware.

V. FEATURE TRANSFORMATION TECHNIQUES

FARM does not directly use the basic features defined in
the previous section for prediction. It starts by first selecting
a subset F ⊆ Fbase of the basic features. The feature vectors
w.r.t. Fbase are then restricted to F .7

FARM transforms the restricted feature vectors associated
with each APK to a new feature space using a set of 3
irreversible transformations designed to: (i) keep accuracy of
prediction comparable to the case when the basic features are
used, and (ii) be robust against adversarial attempts to evade
the classifier. The latter property makes it more difficult for
attackers to adjust the attributes of their malware to evade
detection.

A. Landmark Based Feature Transformation

Consider the US map. Every point on the US map is
characterized by a vector consisting of an apartment number
(possibly nil), street number, street name, town, state, zip code,
and possibly even more features. However, we might choose a

7Because we do not want the adversary to easily guess what features we are
using, F is best selected in a random manner so the adversary has difficulty
in guessing what was chosen. Alternatively, it could also be selected by using
the N features that generate the best predictive results. These will also be
hard for the adversary to guess as he will need to have the same training set
in order to make a guess.

Fig. 3. Illustration of landmark based feature transformation. Red and blue
dots represent a type of malware (e.g. spyware) and goodware in the feature
space respectively. Yellow stars stand for selected landmarks.

set of say 5 landmark points in the US. We can then map each
original feature vector to a new vector of length 5 where each
entry in the new vector is the distance from that entry to one
of the landmark points. This 5-dimensional vector is likely to
represent the original point on the map. Thus, the street address
“236 Riverside Drive Apt 5A, Manhattan, NY 10025” which
precisely identifies an apartment may now be represented by
the 5-d feature vector (20, 11, 216, 492, 117). In this example,
the distance from the above Manhattan address to the first
landmark point is 20, the distance to the second landmark
point is 11, and so forth. An adversary who merely sees this
feature vector cannot reconstruct the original address unless
he knows: (i) the 5 landmark points used and (ii) the distance
function used. We build upon this simple intuition to map the
basic feature vectors via landmark based transformations.

Figure 3 is a simple illustration of landmark based feature
transformation. Assume there is a set of rooting malware (red
circles) and goodware (blue dots) represented in the basic
feature space (for the ease of visualization, we present them in
a 2-dimension space instead of an n-dimension space where
n is the number of basic features). With a set of landmarks
(yellow stars) selected, for each APK (red circle or blue dot),
we can compute a new feature vector for it according to its
distance to each landmark. Formally, suppose there are L M
landmarks selected from m samples in the dataset. Then for
each sample i in the dataset we get a new feature vector
fL M = (di,1, · · · , di,L M), where di, j is the distance from
sample i to landmark j . More details about generating LM
features are presented in Algorithm 1.

Algorithm 1: Generating LM Features

1 Input: F � = { fi j }1≤i≤m,1≤ j≤n (n-dimensional basic
feature vectors for m sample APKs), L M , landmark
selection method λ and distance measure dist;

2 Select landmarks �1, . . . , �L M from m samples by
applying landmark selection method λ(F) to F ;

3 for each sample APK i do
4 for each landmark �h do
5 di,�h = dist (i, �h);

6 f L M
i = (di,�1, · · · , di,�L M) % landmark feature vector

7 return FL M = {f L M
i | 1 ≤ i ≤ m} (landmark based

L M-dimensional feature vectors for m sample APKs);

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

3516 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

In addition to the set F of basic feature vectors, Algorithm 1
needs three more parameters to generate LM features. They
are discussed in detail below.

1) The number of landmarks L M . While L M can be any
integer from 1 to m, in our experiments, we vary L M
over the set {3, 6, 9, . . . , 27, 30}.

2) A distance measure dist (i, �h) between sample i ’s basic
feature vector and landmark �h’s basic feature vector
can be one of many standard measures. We use Euclid-
ean distance, Manhattan distance, Cosine distance, and
Hamming distance in our experiments though of course
other distances metrics may be used as well.

3) A method to select landmarks. We examine three ways
to do this.

• Random selection. L M landmarks are randomly
selected from the training data.

• k−means clustering based selection. The training
samples are first clustered using k−means clustering
with k = L M . One sample is then randomly
selected from each cluster as the landmark.

• Max-distance heuristic selection. Algorithm 2 shows
an algorithm for selecting landmarks that are scat-
tered across the basic feature space. This algorithm
starts by randomly choosing a training point as a
landmark and then iteratively adding training points.
In each iteration, a random sample of training points
is drawn and the point that is “furthest away” (in
terms of the sum of its distance) from the previously
selected landmarks is the next choice. The process
ends when L M landmarks have been picked.

Algorithm 2: Max-Distance Landmark Selection

1 Input: Set M with m samples, F = { fi j }1≤i≤m,1≤ j≤n

(n-dimensional basic feature vectors for m training
APKs), L M , and distance measure dist;

2 �0 = Randomly select one training sample from M
3 SO L = {�0}
4 while |SO L| < L M do
5 R = random samples drawn from M − SO L
6 Best = arg maxr∈R ��∈S O Ldist (l, r)
7 SO L = SO L ∪ {Best}
8 return SO L

B. Feature Value Clustering Based Feature Transformation

We now move on to our second feature transformation
which is based on the intuition that similar features may
be combined together to make a smaller but perhaps more
representative set of features. Algorithm 3 presents the method
we use to do this.

Our FC-feature generation algorithm is also pictorially
depicted in Figure 4 works as follows. It considers each
column in the feature table (corresponding to a basic feature)
to be a column vector. We see the different feature columns
shown on the left of Figure 4. It then uses a clustering
algorithm to cluster the column vectors into G groups. Thus,

Algorithm 3: Generating FC Features

1 Input: F = { fi j }1≤i≤m,1≤ j≤n, G: number of clusters
desired, Clu a clustering algorithm, ⊕ associative and
commutative feature combination algorithm;

2 Cluster the n basic features into G groups accordingly by
considering each feature to be a column vector in F ;

3 for each sample APK i do
4 for each feature group g do
5 f FC

ig = ⊕{i. f | f ∈ g} % combine values of APK
i ’s value of feature f for each f in feature group
g;

6 f FC
i = (f FC

i1 , · · · , f FC
iG) % FC feature vector for

sample i ;

7 return FFC = {f FC
i | 1 ≤ i ≤ m} (feature value

clustering based G-dimensional feature vectors for m
sample APKs);

Fig. 4. Feature Value Clustering (FC) of features into G groups.

each group consists of a set of features which are similar
enough to be clustered together by the clustering algorithm.
The FC-feature transformation associates just one “merged”
feature for each group. For any given APK sample i , the value
of the feature associated with a specific group g (1 ≤ g ≤ G)
of features is obtained by first computing the set {i. f | f ∈ g}
and then combining all the feature values in this set into one by
using an associative and commutative combination operator ⊕
which is part of the input to the algorithm. As ⊕ is associative
and commutative, the order in which it combines the members
of the set {i. f | f ∈ g} does not matter. The result is a new
G-dimensional feature vector for each APK sample i .

We consider three possible definitions of ⊕ in our experi-
ments though our algorithm works with any possible associa-
tive and commutative operator. Specifically, we consider:

1) Product of the group of features as a new feature:
⊕(X) = ∏

x∈X x .
2) Average of the group of features as a new feature:

⊕(X) = (
∑

x∈X x)/|X |.
3) Distance-inverse weighted sum of the group of features

as a new feature: ⊕(X) = α
∑

x∈X x × e−d(x,μ) where
μ is the centroid of X and dist is a distance measure.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: ANDROID MALWARE DETECTION VIA (SOMEWHAT) ROBUST IRREVERSIBLE FEATURE TRANSFORMATIONS 3517

Note that we try all distance measures stated for land-
mark based feature transformation.

It is important to note that the FC-transformation above
maps each APKs n-dimensional basic feature vector to a
G-dimensional space which would usually be much smaller.
The FC-transformation makes several choices. One is the
choice of the clustering algorithm to use — but in addition,
a “hidden” choice is the choice of parameters to use in the
clustering algorithm. Another example is the choice of number
of clusters. A third is the choice of ⊕. And even within ⊕,
a fourth choice is the choice of parameters within ⊕. As an
example, suppose we had 100 features to start with and the FC-
transformation used G = 3. In this case, every APK has a new
FC-feature vector with just 3 values (x1, x2, x3). An adversary
looking at this would have difficulty even knowing which of
the original features went into generating x1, which went into
generating x2 and which went into generating x3, let alone
know the answers to the additional choices mentioned above.
An adversary who reads this paper would still have consid-
erable difficulty in determining how all of these choices were
made in a real-world implementation of FARM.

C. Correlation Graph Based Feature Transformation

We now come to our third feature transformation which also
tries to divide the n basic features into a number of groups
using the novel concept of a correlation graph (CG). We first
construct a symmetrical matrix with n rows and n columns,
where c j1, j2 , the j2th element in the j1th row, represents
the correlation of feature j1 and feature j2. We can also
think of this as a graph whose nodes are features and where
an edge (undirected) linking features j1, j2 is weighted by
the Pearson Correlation Coefficient between the two features.
We then cluster these n features would be clustered into G
groups, and we generate a new feature vector fCG for each
sample APK in the dataset.

Algorithm 4: Generating CG Features

1 Input: F = { fi j }1≤i≤m,1≤ j≤n, Clu a clustering algorithm,
G desired number of groups, ⊕ an associative and
commutative operator;

2 Compute n × n correlation matrix according to column
vectors of F ;

3 Cluster the n basic features into G groups according to
rows of correlation matrix;

4 for each sample APK i do
5 for each feature group g do
6 f CG

ig = ⊕{i. f | f ∈ g};
7 fCG

i = (f CG
i1 , · · · , f CG

iG) CG feature vector for sample
i ;

8 return FCG = {fCG
i | 1 ≤ i ≤ m} (correlation graph

based G-dimensional feature vectors for m sample
APKs);

As in the case of the FC-transformations, the correla-
tion graph transformation looks at rows of the correlation
matrix and clusters features together based on the correlations

that exist. The remainder of the algorithm generates a smaller
set of features as was the case with FC-transformations.

Important Note. The three feature transformations described
here may apply to a wide variety of classification problems.
In this paper, we show that they lead to no compromise (in
fact an improvement) over baselines for 12 Android malware
classification problems, and we additionally show that they are
resilient to certain types of adversarial attacks. We believe that
these results are likely to hold for many other domains as well,
but we do not assert this as a claim of the paper. We further do
not claim robustness against all types of adversarial attacks,
just the three mentioned in this paper.

VI. EXPERIMENTAL EVALUATION

In this section, we describe the results of the experiments
that we have designed to evaluate the performance of FARM
with different feature combinations. Our experimental eval-
uation includes four parts: (1) Distinguishing each of the
3 types Android malware (banking trojans, rooting malware,
spyware) from goodware on both the Isomorphic and No-
Isomorphic datasets; (2) Distinguishing each of the 3 types
Android malware (banking trojans, rooting malware, spyware)
from other types of malware on both the Isomorphic and
No-Isomorphic datasets; (3) Evaluating robustness of FARM
against 3 attacks. In addition, FARM discovered two new
rooting malware samples - a fact that was not previously
known to any of the 61 anti-virus engines on VirusTotal. As
(1) and (2) involve 12 experiments in all, we present a sample
in the main body of the paper. Readers may find more details
at8 part of the paper. We used 10−fold cross-validation and
8 classifiers.9

Late Fusion. The predicted probabilities pi of the M = 8
classifiers Ci , i = 1, . . . , 8 are linearly combined by FARM
as p = ∑M

i=1 γi pi , where
∑

γi = 1. We find the best value
of the γi s by doing a grid search and optimizing performance
on the training set.

A. No Adversarial Attack Case

Tables III and IV summarize the results of experiments on
5 settings (described below) in the no attack case. Each of
the 5 settings is defined below.10 L M for LM, FC , CG for
FC and CG. When more than one of LM, FC and CG are
used at the same time, their Ns are set to the same value.
“Distance” column is used to state the best distance measure

8https://drive.google.com/open?id=14ZQyFtsu6exZhoav4z-
1aDZXPWrnMNjv

9Classifiers used: (1) Bernoulli Naive Bayes, (2) Random Forest, (3) Nearest
Neighbors, (4) Logistic Regression, (5) Gaussian Naive Bayes, (6) AdaBoost
Classifier, (7) Gradient Boosting Decision Tree, (8) XGB Classifier and (9)
SVM.

10We use “SD” to refer to static and dynamic features, “API” to refer to
API package call features, “LM” to refer to the landmark based features
(furthermore, we use “-Rand”, “-Cluster” and “-Max-dis” to represent the
three types of landmark selection methods), “FC” corresponds to feature value
clustering based features, and “CG” is for correlation graph based features.
We use “LF(·, . . . , ·)” denotes the late fusion classifier with appropriate feature
inputs. Of the various metrics reported, the most important one is the “F1-
score”, which reflects a balance of precision and recall. The column N stands
for the number of landmarks or clusters used by LM, FC and CG.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

3518 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE III

MULTIPLE METRICS (AUC AND F1 ETC.) ON ANDROID MALWARE DETECTION VS. GOODWARE / OTHER-MALWARE NO-ISOMORPHIC DATASET

for classifiers with LM features, and “Classifier” stands for
the classifier selected with the best performance.

1) SET 1 Baseline: Basic Features Only: Due to the large
number of SD features, we first compared the performance of
classifiers with all or part of SD features using feature selection
methods. We found that a certain number of selected features
yielded the best F1 score. This is done via a standard ablation
test. In ablation testing, we first compute the performance (F1-
score) with all features; we then drop 1 feature and see which
feature leads to the biggest drop in performance — this feature,
f1 is the most important. We then repeat this process to find
the second most important feature f2 (which is the feature
that leads to the biggest drop in performance, assuming f1
is already dropped), the third most important feature f3, and
so forth. For each f j , we compute the performance of the
classifiers using the features in Fj = F − { f1, . . . , f j }. For
each Fj , we compute the performance of our classifiers using
just the features in F − Fj , and choose the j that leads to
the highest performance. When distinguishing between rooting
malware and goodware, we found that j = 50 selected features
lead to the best F1 score 0.9195. We then trained classifiers
with API features only, as well as the combination of SD
and API features (row “SD + API”) respectively. The results
of combining SD and API features (better than using SD
or API features alone) in Tables III and IV (SET1) show
that the baselines achieve F1-scores of 88.87-96.97% and
91.96-98.26% on the No-Isomorphic and Isomorphic datasets
respectively. These are the numbers that FARM has to beat.

2) SET 2 FARM w/ LM: FARM With Landmark Based
Features: Our SET 2 experiments first compared FARM with
LM-features alone while changing the landmark selection
method and varying the number of landmarks L M . Of the

three landmark selection methods, we found that the max-
distance heuristic selection (LM-Max_dis) is both not compet-
itive and far more time-consuming. We therefore abandoned
this method in the following experiments. Next, we compared
the remaining two landmark selection methods by combining
them with SD, API and SD + API features respectively. The
results show that FARM with landmark features alone beats
the baseline in all 12 cases with F1-Scores of 93.78-98.26%
and 94.06-99.08% for the No-Isomorphic and Isomorphic
datasets respectively.

3) SET 3 FARM w/ FC: FARM With Feature Value Clus-
tering Based Features: The SET 3 experiments used FARM
with classifiers trained on data generated using the feature
clustering based features (w.r.t. different number of clusters G
and the one with best performance is presented in N column)
and combine them with SD, API and SD + API features
respectively. Our SET 3 results show that FARM obtains F1-
scores of 92.08-98.6% and 94.22-99.06% respectively. Here
again, FARM beats the baseline in all 12 experiments and
returns results comparable to those generated by LM-features.

4) SET 4 FARM w/ CG: FARM with Correlation Graph
based Features: In SET 4 experiments, we trained our classi-
fiers with the correlation graph based features (w.r.t. different
number of clusters G) and combined them with SD, API,
and SD + API features respectively. Our results show that
FARM with CG features beats the baselines on all 12 cases
and achieves F1-scores of 94.03-98.56% and 92.96-99.55% on
the No-Isomorphic and Isomorphic datasets respectively.

5) SET 5 FARM w/ all: FARM Approach with All Trans-
formed Features: In SET 5 experiments, we used features from
all the proposed feature transformation methods and combined
them with SD, API and SD + API features respectively.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: ANDROID MALWARE DETECTION VIA (SOMEWHAT) ROBUST IRREVERSIBLE FEATURE TRANSFORMATIONS 3519

TABLE IV

MULTIPLE METRICS (AUC AND F1 ETC.) ON ANDROID MALWARE DETECTION VS. GOODWARE / OTHER-MALWARE ISOMORPHIC DATASET

TABLE V

STATISTICAL RESULTS P-VALUE OF BEST SETTINGS OF

FARM OVER THE BEST BASELINE

The experimental results show that FARM achieves F1-scores
of 94.38-99.53% and 95.61-99.69%, again beating out the
baselines on all 12 problems. Moreover, the combination of
all three feature transformations generated the best results in
all.

Statistical Significance. We tested the null hypothesis that
the best baseline for each of the 12 problems considered was
generated by the same underlying process as the best setting
of FARM (i.e. with L F(L M, FC, CG, SD, AP I).) The null
hypothesis was rejected in all 12 cases with p ≤3.5337e-3 in
all cases, i.e. the probability that the same underlying process
generated both the best baseline results and the best FARM
results is so low that it is almost zero. Thus, the claim that
FARM is better than the best baseline in distinguishing across
the 12 problems considered is statistically valid.

Fig. 5. Impact of fake API package call attack on Android rooting malware
detection: Goodware vs. Rooting Malware (No-Isomorphic).

Fig. 6. Impact of fake API package call attack on Android rooting malware
detection: Other Malware vs. Rooting Malware (No-Isomorphic).

B. Robustness Evaluation

The goal of the three feature transformations introduced in
this paper is to make FARM more robust in the presence of
adversarial attacks. We can be sure that malicious hackers will
adapt their malware once they realize that it has been detected
and that anti-virus engines have developed signatures to pro-
tect Android devices from the threat. Though it is impossible

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

3520 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 7. Impact of increased percentage of permissions attack on Android
rooting malware detection: Goodware vs. Rooting Malware (No-Isomorphic).

Fig. 8. Impact of increased percentage of permissions attack on Android root-
ing malware detection: Other Malware vs. Rooting Malware (No-Isomorphic).

Fig. 9. Impact of reduced percentage of API package call attack on Android
rooting malware detection: Goodware vs. Rooting Malware (No-Isomorphic).

Fig. 10. Impact of Reduced Percentage of API Package Call Attack on
Android Rooting malware Detection: Other Malware vs. Rooting Malware
(No-Isomorphic).

to imagine all the types of evasion methods that malicious
hackers might come up with, we tested the robustness of
FARM against three kinds of attacks.

Threat Model. We assume that the adversary: (i) knows
all the 1058 basic features used by FARM, and (ii) that the
adversary is also familiar with the suite of 8 classifiers used
in the paper (Bernoulli and Gaussian Naive Bayes, Random
Forest, k-Nearest Neighbor, Logistic Regression, Adaboost,

Fig. 11. Impact of fake API package call attack on Android Banking Trojans
detection: Goodware vs. Banking Trojans (Isomorphic).

Fig. 12. Impact of fake API package call attack on Android Banking Trojans
detection: Other Malware vs. Banking Trojans (Isomorphic).

Fig. 13. Impact of increased percentage of permissions attack on Android
Banking Trojans detection: Goodware vs. Banking Trojans (Isomorphic).

Gradient Boosted Decision Tree, XGB, and SVM). We further
assume that the attacker has read this paper and hence knows
about the three types of feature transformation used. But
we do not assume the attacker knows any of the following:
(i) the specific landmarks used, the landmark selection strategy
used and/or distance function used by the defender in the
Landmark-based Feature transformation, (ii) the number of
clusters and the ⊕ feature combination algorithm used in the
Feature-Value based Clustering Transformation, and (iii) the
number of groups and the specific ⊕ operator used by the
defender in the Correlation-Graph based feature transforma-
tion. We further assume that the attacker carries out the three
kinds of attacks described below.11 We assume the attacker
tries three kinds of attacks:

1) Fake API Package calls in which the adversary injects
irrelevant API package calls into his malware.

11We do not claim that FARM is robust against all kinds of adversarial
attacks (e.g. obfuscated gradient attacks [8]). Indeed, such a claim would be
very hard to justify for almost any paper without making some unrealistic
assumptions.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: ANDROID MALWARE DETECTION VIA (SOMEWHAT) ROBUST IRREVERSIBLE FEATURE TRANSFORMATIONS 3521

Fig. 14. Impact of increased percentage of permissions attack on Android
Banking Trojans detection: Other Malware vs. Banking Trojans (Isomorphic).

Fig. 15. Impact of reduced percentage of API package call attack on Android
Banking Trojans detection: Goodware vs. Banking Trojans (Isomorphic).

2) Fake permission requests in which the adversary
requests permissions that are irrelevant for his malware.

3) Reduced API Package calls in which the adversary tries
to artificially reduce the number of calls made to API
packages.

Note that it is more or less impossible to imagine all the types
of attacks that a savvy attacker may come up with - hence,
in this paper, we limit our claims of robustness to these types
of attacks.

a) Fake API package call feature attack: Here, attackers
try to evade FARM by increasing the percentage of fake API
package calls made, i.e. by adding more and more fake API
package calls into the code. Table VI shows that the impact
of this attack on FARM is just 10.47-72.12% than the impact
on the baselines — on average, across the 12 classification
problems, the impact on FARM is 36%, i.e. FARM is about
3 times as robust as the baselines across the 12 problems
studied in this paper. Figures 5 and 6 show the impact of
this attack on the best version of FARM (blue line with
square markers) compared to the best baseline (yellow line
with dot markers) as the percentage of fake calls increases
in the rooting app vs. goodware and rooting app vs. other
malware classification problems respectively.

Surprisingly, as more fake API package calls are made,
it becomes easier for classifiers to identify rooting malware.
This suggests that the malicious behavior of malware is related
to the API package calls that they make. For example, Android
Banking Trojans call API android.app.admin to hijack a
smartphone’s administrative features at the system level, while
it is not commonly called in Android Goodware. Thus, when
we simulate the attacker’s behavior and increasing the Fake
Call Percentage in malware, the performance of the classifier

Fig. 16. Impact of reduced percentage of API package call attack on Android
Banking Trojans detection: Other Malware vs. Banking Trojans (Isomorphic).

Fig. 17. Impact of fake API package call attack on Android Spyware
detection: Goodware vs. Spyware (No-Isomorphic).

using both our best setting and baseline improves because
the fake calls may involve the malware calls many more API
calls than a piece of goodware would ordinarily make. FARM
always achieve better F1 performance, especially when the
attacker injects only a small percentage of fake API package
calls (which is the best strategy for him as this is when both
FARM and the baselines’ predictive accuracy is lowest in this
situation).

b) Fake permission attack: Second, we assume that
attackers try to evade malware detection by increasing the
number of permissions they seek. Table VII shows that on
average, the impact of this attack on FARMis 10.25-74.42%
of the impact on the best baseline, with the average impact on
FARM being 35.74%. Thus, as in the case of the first attack,
FARM is about 3 times as robust to this attack than the best
baseline.

The “fake permission” percentage in Figures 7 and 8
refer to the percentage of requested permissions that are
fake. The figures respectively show the results of distin-
guishing between rooting malware and goodware on the
one hand, and other malware on the other hand. We see
that as more permissions are required, both FARM and the
baselines do a better job in detecting rooting malware. But
again, the best case scenario for the attacker is when the
percentage of fake (unused) permissions is below about 8%
and in this case, FARM beats the baselines. FARM per-
forms better than the best baseline because malware also
achieves its malicious function by calling system permissions
in the manifest file. For example, Android Spyware uses
system permissions permission:RECEIVE_SMS and permis-
sion:READ_SMS to steal messages from the smartphone while
common Android Goodware does not. Also, both common

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

3522 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 18. Impact of fake API package call attack on Android Spyware
detection: Other Malware vs. Spyware (No-Isomorphic).

Fig. 19. Impact of increased percentage of permissions attack on Android
Spyware detection: Goodware vs. Spyware (No-Isomorphic).

Fig. 20. Impact of increased percentage of permissions attack on Android
Spyware detection: Other Malware vs. Spyware (No-Isomorphic).

Android Goodware and Android Spyware do not call the
permission android.permission.SET_TIME, which allows the
application to set the system time. When the attacker behavior
increases the Unused Permissions Percentage, it the classifiers’
job becomes easier to distinguish the adapted malware if
it calls the permission android.permission.SET_TIME. The
performance of both classifiers increases at the same time.

c) Reduced API feature attack: Third, we assume that
attackers are more strategic and capable — we allow them
to selectively drop some API package calls by 1 when the
original value is at least 2. Table VIII shows that the impact
of this attack on FARM ranges from −3.64-6.14, suggesting a
wide variation. On 11 of 12 cases, FARM outperforms the best
baseline, but in one case (Other malware vs. Rooting malware),
the best baseline outperforms FARM. Again, on average,
FARM performs very well, with the accuracy of FARM often
improving under this attack. This is because the modified
malware achieves its malicious purpose by calling specific API
calls and because the number of called APIs can be decreased
but they cannot be fully removed. The results on Rooting

Fig. 21. Impact of reduced percentage of API package call attack on Android
Spyware detection: Goodware vs. Spyware (No-Isomorphic).

malware detection are shown in Figures 9 and 10. Unlike
the results from the previous two kinds of attack, we see
that the reduced API feature attack is harder for both FARM
and traditional classifiers to adapt to. However, the situation
is worse for the baseline classifiers. When distinguishing
between rooting malware and goodware, the F1 performance
goes down slightly as the number of API package calls is
reduced. The reason might be that rooting malware gets less
malicious and more similar to goodware in this case. However,
the F1 score goes up when distinguishing rooting malware
from other malware. The reason might be that as rooting
malware is getting more similar to goodware, it ends up
being more distinct from other malware. Table VI, Table VII
and Table VIII show 3 kinds of applied attack during the
robustness test, and impact score is calculated according to
the average of 0% to 20% increased or decreased number of
APIs or permissions. The performance under attack is always
increasing because our classifiers distinguish Goodware vs.
Malware on API or Permission features. When we simulate the
attack, we increase the number of unused APIs or permissions
in malware, and so can detect the malware easier because some
API or permission features may not be used by both goodware
or malware, but now more malware calls the common unused
feature, leading to better classification results. Again, FARM
performs better than the baseline. When we decrease 1 for
some of called APIs (frequency ≥ 2 to keep its malicious
function) in malware, no obvious change on the performance
because the feature space doesn’t change too much compared
to the previous two attacks. At the same time, FARM still has
better performance.

C. Discovery of New Rooting Malware

FARM has successfully labeled two malware samples on
VirusTotal12 as rooting malware before this was observed by
any of the 61 anti-virus engines on VirusTotal. Moreover, on a
phone running Android version 4.4.4, these are labeled as
goodware as Figure 24 shows. We reported these two samples
to Google’s Android Security Team who have confirmed the
findings.

The first malware has the (common) name “App Market”13

and disguises itself as a normal third party application market

12https://www.virustotal.com
13SHA256: 1ff2c23d3e6558ad4394ac3eb339c1bc4952eecfa45a35e3eb0e20

6db8568925

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: ANDROID MALWARE DETECTION VIA (SOMEWHAT) ROBUST IRREVERSIBLE FEATURE TRANSFORMATIONS 3523

Fig. 22. Impact of reduced percentage of API package call attack on Android
Spyware detection: Other Malware vs. Spyware (No-Isomorphic).

TABLE VI

AVERAGE IMPACT SCORE a OF FARM OVER THE BEST BASELINE

ON INCREASED FAKE API PACKAGE CALL ATTACK

TABLE VII

AVERAGE IMPACT SCORE a OF FARM OVER THE BEST BASELINE

ON INCREASED PERCENTAGE OF PERMISSIONS ATTACK

APK. When the user installs this APK, it asks for 14 permis-
sions in total, including some dangerous permissions such as
WRITE_CALENDAR and WRITE_EXTERNAL_STORAGE.14

After installation, a number of malicious behaviors end up
occurring: it keeps asking for new permissions, automatically
downloads new apps, and bypasses the lock screen.

The second malware with the name “MoboMarket”15

is actually impersonating a benign application also called
MoboMarket and asks for dangerous permissions such
as WRITE_EXTERNAL_STORAGE. After digging into its

14https://developer.android.com/guide/topics/permissions/overview
15SHA256: 886238c0d4894bd346cd7c3c5585d9c48b50d1ba73c90284f33ee

d1c0a5336df

TABLE VIII

AVERAGE IMPACT SCORE a OF FARM OVER THE BEST BASELINE
ON REDUCED PERCENTAGE OF API PACKAGE CALL ATTACK

Fig. 23. Two newly detected rooting malware evade default Android Security
check.

obfuscated java source code, we found some code snippets
which are directly related to rooting behavior as seen in Fig-
ure 24. We found that its source code includes a public
class RequestRootActivity.java that asks for root privilege
on the infected device. We also discovered out that this
“MoboMarket” is actually a malware variant of the authentic
“MoboMarket” application, which has rooting functionality.
Again, the Google Android Security Team confirms that this
newly labeled rooting malware impersonates a popular rooting
APK called KingRoot.

VII. LIMITATIONS OF THE FARM APPROACH

The FARM approach has three limitations that we discuss
briefly below.

1) Though FARM’s feature transformations can be applied
to any set of “base” features, it is important that this set
of base features be selected judiciously and be capable
of making good predictions. In this paper, we chose
base features that have been shown in the literature to
be useful for classifying Android apps into benign vs.
malicious samples.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

3524 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 24. Malicious source code snippet from malware MoboMarket.

2) As in much of machine learning research both inside
and outside cybersecurity, there is a critical need to find
the values of the hyperparameter settings that yield the
best prediction results. We have adopted a grid search
based method to address this problem in this paper, but
an analytic solution could be helpful for future work.

3) We have shown that FARM is robust against three types
of attack. However, there may be other kinds of attacks
(e.g. obfuscated gradient based attacks [8] or attacks that
do not depend on API function calls that we have not
tested against). While we do not expect to find classifiers
that are robust against every type of attack, identifying
a larger space of attacks and showing how FARM
either is robust to those attacks or could be modified to
withstand those attacks is an important future research
topic. While FARM’s feature transformations are defined
even if completely different types of features are used,
their effectiveness with new or very different features
remains to be explored.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we make the following contributions: (i) first,
we propose three new feature transformation techniques that
can be used to generate feature vectors that are very hard
to reverse engineer, (ii) we propose the FARM techniques
that use these transforms to predict whether a given Android
APK is a form of malware or not — we consider three forms
of malware, namely spyware, banking trojans and rooting
malware. (iii) we propose three new kinds of attacks that
a malicious hacker might take to evade standard classifiers
and show that FARM is quite robust against these kinds of
attacks. In particular, when there are no attacks, FARM slightly
outperforms various baselines and when these three attacks
are used, FARM is on average about 3 times more robust
than the baselines. Finally, our work is not purely theoretical:
FARM has discovered two Android APKs to be rooting apps
before any of the 61 anti-viruses on VirusTotal came to the
same conclusion. These samples were reported to Google’s
Android Security Team who have confirmed the labeling of
these samples as rooting apps.

REFERENCES

[1] (2011). Number of the Week: At Least 34% of Android Malware
is Stealing Your Data. Accessed: May 20, 2019. [Online]. Avail-
able: https://www.kaspersky.com/about/press-releases/2011_number-of-
the-week- at-least-34-of-android-malware-is-stealing-your-data

[2] (2012). 2011 Mobile Threats Report. Accessed: May 20, 2019.
[Online]. Available: https://www.juniper.net/us/en/local/pdf/additional-
resources/jnpr-2011-mobile-threats-report.pdf

[3] (2019). Android Security & Privacy 2018 Year in Review. Accessed:
May 20, 2019. [Online]. Available: https://source.android.com/security/
reports/Google_Android_Security_2018_Report_Final.pdf

[4] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level fea-
tures for robust malware detection in android,” in Security and Privacy
in Communication Networks. Cham, Switzerland: Springer, 2013.

[5] M. Almeida et al., “CHIMP: Crowdsourcing human inputs for mobile
phones,” in Proc. World Wide Web Conf., 2018, pp. 45–54.

[6] I. Amaya, J. C. Ortiz-Bayliss, A. E. Gutierrez-Rodriguez,
H. Terashima-Marin, and C. A. C. Coello, “Improving hyper-heuristic
performance through feature transformation,” in Proc. IEEE Congr.
Evol. Comput. (CEC), Jun. 2017, pp. 2614–2621.

[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android malware in
your pocket,” in Proc. NDSS, 2014, pp. 23–26.

[8] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients
give a false sense of security: Circumventing defenses to
adversarial examples,” 2018, arXiv:1802.00420. [Online]. Available:
http://arxiv.org/abs/1802.00420

[9] C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. S. Subrahmanian,
“DBank: Predictive behavioral analysis of recent Android banking
trojans,” IEEE Trans. Dependable Secure Comput., to be published.

[10] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi,
“Xmandroid: A new Android evolution to mitigate privilege esca-
lation attacks,” Technische Univ. Darmstadt, Darmstadt, Germany,
Tech. Rep. TR-2011-04, 2011.

[11] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based malware detection system for Android,” in Proc. SPSM, 2011,
pp. 15–26.

[12] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discriminative
model for Android malware detection with decompiled source code,”
IEEE Trans. Dependable Secure Comput., vol. 12, no. 4, pp. 400–412,
Jul. 2015.

[13] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian, “EC2: Ensemble
clustering and classification for predicting Android malware families,”
IEEE Trans. Dependable Secure Comput., to be published.

[14] Z. Chen, K. Wang, X. Wang, P. Peng, E. Izquierdo, and L. Lin, “Deep
co-space: Sample mining across feature transformation for semi-
supervised learning,” IEEE Trans. Circuits Syst. for Video Technol.,
vol. 28, no. 10, pp. 2667–2678, Oct. 2018.

[15] I. Gasparis, Z. Qian, C. Song, and S. V. Krishnamurthy, “Detecting
Android root exploits by learning from root providers,” in Proc. 26th
USENIX Secur. Symp., 2017, pp. 1129–1144.

[16] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in Proc. Eur.
Symp. Res. Comput. Secur. Cham, Switzerland: Springer, 2017,
pp. 62–79.

[17] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intelligent
Android malware detection system based on structured heterogeneous
information network,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2017, pp. 1507–1515.

[18] W. Hu and Y. Tan, “Generating adversarial malware examples for
black-box attacks based on GAN,” 2017, arXiv:1702.05983. [Online].
Available: http://arxiv.org/abs/1702.05983

[19] X. Huang, L. Wu, E. Chen, H. Zhu, Q. Liu, and Y. Wang, “Incremental
matrix factorization: A linear feature transformation perspective,” in
Proc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017, pp. 1901–1908.

[20] U. Khurana, D. Turaga, H. Samulowitz, and S. Parthasrathy, “Cog-
nito: Automated feature engineering for supervised learning,” in Proc.
IEEE 16th Int. Conf. Data Mining Workshops (ICDMW), Dec. 2016,
pp. 1304–1307.

[21] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for Machine-Learning-Based Android malware
detection,” IEEE Trans Ind. Informat., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018.

[22] Y. Li, J. Jang, X. Hu, and X. Ou, “Android malware clustering through
malicious payload mining,” in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses. Cham, Switzerland: Springer, 2017, pp. 192–214.

[23] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “MARVIN: Effi-
cient and comprehensive mobile app classification through static and
dynamic analysis,” in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf.,
Jul. 2015, pp. 422–433.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: ANDROID MALWARE DETECTION VIA (SOMEWHAT) ROBUST IRREVERSIBLE FEATURE TRANSFORMATIONS 3525

[24] I. Lunden. (2015). 6.1B Smartphone Users Globally by 2020, Over-
taking Basic Fixed Phone Subscriptions. Accessed: May 21, 2019.
[Online]. Available: http://techcrunch.com/2015/06/02/6-1b-smartphone-
users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions

[25] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu, “Shadow attacks:
Automatically evading system-call-behavior based malware detection,”
J. Comput. Virol., vol. 8, nos. 1–2, pp. 1–13, Dec. 2011.

[26] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android malware by build-
ing Markov chains of behavioral models,” in Proc. NDSS, 2017,
pp. 1–34.

[27] N. McLaughlin et al., “Deep Android malware detection,” in Proc. 7th
ACM Conf. Data Appl. Secur. Privacy, 2017, pp. 301–308.

[28] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini,
and E. De Cristofaro, “A family of droids-Android malware detection
via behavioral modeling: Static vs dynamic analysis,” in Proc. 16th
Annu. Conf. Privacy, Secur. Trust (PST), Aug. 2018, pp. 1–10.

[29] M. Pechenizkiy, A. Tsymbal, and S. Puuronen, “PCA-based feature
transformation for classification: Issues in medical diagnostics,” in
Proc. 17th IEEE Symp. Computer-Based Med. Syst., Jun. 2004,
pp. 535–540.

[30] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: Evaluating
Android anti-malware against transformation attacks,” in Proc. 8th ACM
SIGSAC Symp. Inf., Comput. Commun. Secur., 2013, pp. 329–334.

[31] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
Effective and efficient behavior-based Android malware detection and
prevention,” IEEE Trans. Dependable Secure Comput., vol. 15, no. 1,
pp. 83–97, Jan. 2018.

[32] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid: Auto-
matic reconstruction of Android malware behaviors,” in Proc. NDSS,
2015, pp. 1–15.

[33] K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection
of repackaged Android malware with code-heterogeneity features,”
IEEE Trans. Dependable Secure Comput., vol. 17, no. 1, pp. 64–77,
Jan. 2020.

[34] R. Unuchek. (Jul. 2019). Rooting Your Android: Advantages, Disad-
vantages, and Snags. [Online]. Available: https://www.kaspersky.com/
blog/android-root-faq/17135/

[35] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
permission-induced risk in Android applications for malicious appli-
cation detection,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 11,
pp. 1869–1882, Nov. 2014.

[36] G. Wu and E. Y. Chang, “Adaptive feature-space conformal transforma-
tion for imbalanced-data learning,” in Proc. 20th Int. Conf. Mach. Learn.
(ICML), 2003, pp. 816–823.

[37] X. Wu, W. Zuo, L. Lin, W. Jia, and D. Zhang, “F-SVM: Combination
of feature transformation and SVM learning via convex relaxation,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5185–5199,
Nov. 2018.

[38] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile
OS updating,” in Proc. IEEE Symp. Secur. Privacy, May 2014,
pp. 393–408.

[39] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the OS
and dalvik semantic views for dynamic Android malware analysis,” in
Proc. 21st USENIX Secur. Symp., 2012, pp. 569–584.

[40] H. Zhang, D. She, and Z. Qian, “Android root and its providers:
A double-edged sword,” in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur., 2015, pp. 1093–1104.

[41] M. Zheng, M. Sun, and J. C. S. Lui, “DroidTrace: A ptrace based
Android dynamic analysis system with forward execution capability,”
in Proc. Int. Wireless Commun. Mobile Comput. Conf. (IWCMC),
Aug. 2014, pp. 128–133.

[42] Z. Zhu and T. Dumitraş, “Featuresmith: Automatically engineering
features for malware detection by mining the security literature,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 767–778.

Qian Han received the B.Eng. degree from the
Department of Electronic Engineering, Tsinghua
University, in 2016. He is currently pursuing the
Ph.D. degree with Dartmouth College, advised by
Prof. V. S. Subrahmanian. In 2015, he spent three
months as a Visiting Research Assistant at Nanyang
Technological University, Singapore. His research
interests lie in cybersecurity, data-mining, game the-
ory, and social network analysis.

V. S. Subrahmanian is currently a Distinguished
Professor in cybersecurity, technology, and society
with Dartmouth College, and also the Director of
the Institute for Security, Technology, and Society
at Dartmouth. He previously served as a Professor
of computer science at the University of Maryland
from 1989 to 2017, where he created and headed
both the Lab for Computational Cultural Dynamics
and the Center for Digital International Government.
He also served as the Director of the University of
Maryland’s Institute for Advanced Computer Studies

for over six years. He is an expert on big data analytics, including methods to
analyze text/geospatial/relational/social network data, learn behavioral models
from the data, forecast actions, and influence behaviors with applications to
cybersecurity and counterterrorism. He has written five books, edited ten,
and published over 300 refereed articles. He is a fellow of the American
Association for the Advancement of Science and the Association for the
Advancement of Artificial Intelligence; moreover, he received numerous other
honors and awards. His work has been featured in numerous outlets such as
the Baltimore Sun, The Economist, Science, Nature, The Washington Post,
and American Public Media. He serves on the editorial boards of numerous
journals, including Science, the Board of Directors of the Development
Gateway Foundation (set up by the World Bank), SentiMetrix, Inc., and on
the Research Advisory Board of Tata Consultancy Services. He previously
served on the DARPA’s Executive Advisory Council on Advanced Logistics
and as an ad-hoc member of the US Air Force Science Advisory Board.

Yanhai Xiong received the bachelor’s degree in
automation from the University of Science and Tech-
nological University of China, and the Ph.D. degree
in computer science and engineering from Nanyang
Technological University, Singapore. She has been
holding a post-doctoral position at Dartmouth Col-
lege since July 2018. Her research interests lie in
optimization, machine learning, cybersecurity, and
smart cities.

Authorized licensed use limited to: Dartmouth College. Downloaded on December 06,2020 at 04:06:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

