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Generating Fake Documents using
Probabilistic Logic Graphs

Qian Han, Cristian Molinaro, Antonio Picariello, Giancarlo Sperlı̀, V.S.Subrahmanian, Yanhai Xiong

Abstract—Past research has shown that over 8 months may elapse between the time when a network is compromised and the time
the attack is discovered. During this long gap, attackers can steal valuable intellectual property from the victim. The recent FORGE
system [8] has suggested that automatically generating fake—but believable—versions of documents can delay the attacker, cost him
money, and increase his uncertainty. However, in order to generate fakes, FORGE only modifies the textual component of the
document in question. But in the real world, documents consist of many non-textual components such as charts, equations, formulas,
diagrams, and tables. We propose the concept of a Probabilistic Logic Graph (PLG) and show that PLGs provide a single, unified
framework within which the different parts of a document can be expressed. We then define the problem of generating, for a given PLG
representation of a document, a set of fake yet highly believable PLGs (i.e., documents), so that an attacker looking at them (both the
original and the fake ones) cannot easily identify the original document. We show that the problem of generating fake PLGs is
intractable—but we propose an approximation algorithm that solves it efficiently. We evaluate the use of PLGs over a corpus of patents
and show that our fakes can effectively deceive an adversary.

Index Terms—Deception, cybersecurity, fake documents, intellectual property
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1 INTRODUCTION

THeft of intellectual property (or IP) from US defense
contractors, pharma companies, and others is now

rampant—allegations of IP theft are now made almost daily
in the press [15], [19]. The situation is further exacerbated
by the fact that months might pass by before a successful
compromise of an enterprise network is discovered. For
example, researchers from Symantec [6] showed that on
average, there is a gap of 312 days before a zero-day attack
is discovered. During this time, the attacker has a relatively
free hand to steal IP.

In order to address this problem, [8] developed the Fake
Online Repository Generation Engine (or FORGE) system.
The basic idea behind FORGE is simple: automatically
generate k fake versions of every real document. When an
attacker compromises an enterprises and steals their IP, one
of two outcomes can occur. On the one hand, he might
perform actions (e.g., build an engine) using one of the
stolen documents as his guide—if this occurs randomly, his
chance of using the right document is 1

k+1 , which is small.
On the other hand, if he knows that the network has fake
documents in it, he will need to make some effort to identify
the real document. This takes time (which will be valuable
for the victim), imposes costs on the attacker, and leaves
his technical people frustrated and uncertain about whether
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they found the right design. Simply put, the attacker is
faced with a needle in the haystack problem. FORGE was
applied only to technical documents—we continue focusing
on technical documents in this paper as well.

Technical articles are challenging for several reasons.
They involve technical sub-languages and jargon, and con-
tain elements such as equations, graphs, charts, figures,
and tables that are not directly amenable to traditional
NLP. FORGE only considers the textual part of a document
and generates fakes by replacing some concepts c in the
document by related concepts c′—but only in the textual
part. If a concept c appears both in the text and in a diagram
or a table in the document, then FORGE would replace c
with some new concept c′ in the text, but not in the diagram
or table, leading to an inconsistency that an adversary can
easily exploit when trying to separate the real document
from the fakes.

Deceptive fake versions of a document should be cre-
ated by modifying important technical components of the
original document. In order to achieve this, three important
problems need to be solved. (i) We need to develop a
formalism to represent the many different kinds of technical
content (e.g., text, tables, diagrams, equations, formulas,
etc.) appearing in documents. (ii) We then need to generate
fake yet believable versions of technical content captured via
the representation of the document in the aforementioned
formalism. After this, we need to be able to map back this
representation into fake documents. (iii) We need to ensure
that the fakes are not easily detectable by an adversary. We
assume an adversary model consisting of two parts: (a) the
hackers who penetrate the enterprise and steal documents,
and (b) the domain experts who look at the documents,
real and fake, and assess which one is real. In this paper,
we consider a mix of both. We consider a hacker who is
sufficiently familiar with network analysis that he can ana-
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lyze a graph showing the relationship between the original
document and the fakes. We must ensure that the resulting
graph prevents him from figuring out which the original
document is. A big part of our focus is on (b) because the
hackers are unlikely to be experts in the problem domain—
for example, there have been many recent news articles
about theft of COVID related vaccine data from Western
companies, e.g. Spain1 and the USA2. It is unlikely that
hackers will be experts in medicine, just as it is unlikely
that they will be experts in design of missiles or batteries
or a new pharmaceutical. We then try to generate fakes
that are “close enough” to the original to be considered
plausible by domain experts, but sufficiently “far away” to
likely be technically incorrect. The main goal of this paper
is to address the aforementioned problems, which we do as
discussed below.

Contributions. We make the following contributions.

• We introduce formal syntax and semantics of (Proba-
bilistic) Logic Graphs, a simple yet powerful formal-
ism to model a wide variety of content present in
documents (e.g., charts, equations, formulas, tables,
and many others), along with uncertainty. Probabilistic
Logic Graphs (PLGs) allow us to represent and process
documents containing different kinds of information in
a uniform way.

• After introducing PLGs, we tackle the problem of
generating fake yet believable PLGs (i.e., documents
modeled via PLGs). We formally define the Fake PLG
Generation Problem in such a way that the Adversary
Model is taken into account. We then study its com-
putational complexity. Specifically, we show that it is
NP-hard.

• In light of the intractability result, we develop a greedy
algorithm to approximately solve the problem and an-
alyze its complexity.

• We experimentally evaluate the effectiveness of our
algorithm in deceiving experts by automatically gen-
erating fake versions of computer science patents and
presenting them to a panel of computer scientists. Our
results show that our framework achieves high levels
of deception.

The basic use of PLGs for generating fake documents is
shown in Figure 1. An original document d0 is first repre-
sented as a PLG pg0 using the PLG paradigm introduced in
this paper. After this, the PLG pg0 is transformed into a set
of fake PLGs pg1, . . . , pgn which are sufficiently “consistent”
(we will define this concept formally in the paper) with the
original to be believable, but sufficiently inconsistent that
they are likely wrong. Moreover, they are required to satisfy
additional properties that make it difficult for an adversary
to identify the original PLG pg0. Each fake PLG pgi can then
be used to generate a fake document di, leading to a set of

1. https://english.elpais.com/society/2020-09-18/chinese-hackers-
accused-of-stealing-information-from-spanish-centers-working-on-
covid-19-vaccine.html

2. https://www.nytimes.com/2020/07/21/us/politics/
china-hacking-coronavirus-vaccine.html
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Fig. 1: Overall use of PLGs for Fake Document Generation.

fakes that can be introduced into the enterprise network3.
Organization. The paper is organized as follows. We in-

troduce (Probabilistic) Logic Graphs in Section 2. We define
the Fake PLG Generation Problem and study its computa-
tional complexity in Section 3. We then propose a greedy
algorithm to approximately solve the problem in Section 4
and also assess its complexity. We illustrate our framework
with a real-world example in Section 5. An experimental
evaluation of our approach is reported in Section 6. Related
work is discussed in Section 7. We draw conclusions and
outline directions for future work in Section 8.

2 (PROBABILISTIC) LOGIC GRAPHS

In this section, we first introduce logic graphs (LGs) and then
introduce probabilistic logic graphs (PLGs).

Logic graphs are directed graphs enriched with seman-
tic information annotating vertices and edges. They are a
simple but expressive formalism to naturally model differ-
ent kinds of content encountered in documents, such as
diagrams (e.g., flowcharts), expressions (e.g., algebraic or
Boolean expressions), equations, tables, and many others.
LGs provide a single unifying formalism to represent and
process all these different kinds of document content. PLGs
are the uncertain counterpart of LGs and thus allow us
to model uncertainty when defining LGs—uncertainty can
naturally arise in many ways. For instance, if Optimal Char-
acter Recognition (OCR) is used to process documents, then
there is uncertainty in the automated extraction of informa-
tion from documents. Algorithmic error is also a possible
source of uncertainty—for instance, learning models such
as HMMs may be used to predict the next character or
word in text, but such models may not work perfectly when
predicting the next character in a mathematical equation or
chemical formula. Finally, we note that if machine learning
models are used for text extraction, then they may naturally
return a probability. We will say more about the sources of
uncertainty shortly.

Syntax. We assume that within any given area of interest
(e.g., computer science), we are given a set P of properties
with each property P ∈ P having an associated domain
dom(P ) of possible values. These are used to express prop-
erties of vertices and edges.

3. We are aware of the fact that the presence of fakes may cause
a legitimate user of the system to inadvertently use a fake document
instead of the real one. We note that a solution to this based on message
authentication codes was already presented in [8] and this solution can
be used directly within our PLG framework as well.

https://www.nytimes.com/2020/07/21/us/politics/china-hacking-coronavirus-vaccine.html
https://www.nytimes.com/2020/07/21/us/politics/china-hacking-coronavirus-vaccine.html
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Input	N >	1

p =	2

N%p =	0

N >=	p2

p =	p +	1

yes

yes

no

no

Print N is
prime

Print N is
not prime

Fig. 2: A flowchart (primality test).

As usual, a directed graph is a pair (V,E), where V is
a finite set of vertices and E ⊆ V × V is a finite set of (di-
rected) edges. We enrich graphs with semantic information
expressed by means of annotations.

An annotation is a triple of the form (x, P, p), where x ∈
V ∪ E, P ∈ P, and p ∈ dom(P )—the intuitive meaning is
that p is the value of property P for vertex/edge x. A set
of annotations is coherent if it does not contain two distinct
annotations for the same vertex (resp. edge) and property.
Thus, a vertex (resp. edge) can have at most one value for a
property.

Definition 1 (Logic Graph). A logic graph (LG) is a triple
(V,E,A) where

• (V,E) is a directed graph, and
• A is a finite coherent set of annotations.

LGs allow us to represent the different kinds of content
that can be found in documents in a single unified syntax as
illustrated in the following two examples.

Example 1. Consider the flowchart depicted in Figure 2, describ-
ing a simple algorithm to check primality. A corresponding LG
is depicted in Figure 3, which uses type and text as properties.
The domain of type is {input, output, decision, process} while the
domain of text is any string.

Here vertices are used to model flowchart shapes (namely,
input, output, decision, and process) while edges model flowlines.
Property type is used to describe the kind of flowchart shape
represented by a vertex, while text is used to keep track of text
annotating flowchart symbols (shapes and flowlines).

Example 2. Consider the algebraic expression Y + Z× 7. A
natural LG representing it is depicted in Figure 4, which is
essentially the corresponding binary expression tree. Here, each
vertex has a value property.

Property value is used to describe the operator (e.g., + or ×)
or operand (e.g., Y, Z, or 7) a vertex corresponds to.

The preceding examples illustrate how LGs enable us to
naturally represent different kinds of information. Since the
automatic extraction of LGs can be inaccurate, we generalize

text:	yes

text:	yes

text:	no

text:	no

type:	input
text:	Input	N >	1

type: process
text: p =	2

type:	output
text:	Print N is prime

type:	output
text:	Print N is not prime

type: process
text: p =	p +	1

type:	decision
text:	N >=	p2

type:	decision
text:	N%p=	0

Fig. 3: A logic graph modeling the flowchart of Figure 2.

value:	+

value:	x

value:	7value:	Z

value:	Y

Fig. 4: A logic graph modeling the expression of Example 2.

LGs into probabilistic logic graphs, which enable us to model
uncertainty.

A probabilistic annotation is an annotation along with a
probability pr ∈ (0, 1], denoted as (x, P, p, pr)—the in-
tuitive meaning is that p is the value of property P for
vertex/edge x with probability pr . A set of probabilistic
annotations PA is coherent if
• it does not contain two distinct probabilistic annota-

tions for the same vertex/edge, property, and value;
and

• for every x ∈ V ∪E and P ∈ P,
∑

(x,P,p,pr)∈PA pr = 1.
Note that we can model the case where x does not have

a value for property P by introducing a distinguished value
in dom(P ) (e.g., called null ) meaning that x has no value for
P . So we assume that whenever a vertex/edge x of an LG
does not have a value for a property P , then the annotation
(x, P,null) belongs to the LG.

Definition 2 (Probabilistic Logic Graph). A probabilistic
logic graph (PLG) is a triple (V,E,PA) where
• (V,E) is a directed graph, and
• PA is a finite coherent set of probabilistic annotations.

Example 3. A PLG for the expression of Example 2 is shown
in Figure 5. We show the distribution over the values of property
value next to each vertex.

For instance, the lower-right vertex represents the number 7
with probability 0.6 and the number 1 with probability 0.4. These
probabilities may result because a classification algorithm may be
used during an Optical Character Recognition (OCR) process and
it may report a 60% probability that the number is a 7 and a 40%
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value:	+	(1)

value:	x	(0.8),	+	(0.2)

value: 7	(0.6),	1	(0.4)value:	Z (1)

value:	Y	(1)

Fig. 5: A PLG for the expression of Example 2.

probability that the number is a 1. We note that virtually every
classifier available in packages like Scikit-Learn provides a
probability of an object being classified belonging to a class (e.g.,
the class corresponding to the number 7 vs. the class correspond-
ing to the number 1). Hence, this assumption is compatible with
the way classifiers work today. To keep the figure readable, it is
assumed that for every edge null is the value of property value
with probability 1 (which means that every edge has no annotation
for sure).

Semantics. As mentioned above, the goal of PLGs is
to model uncertain LGs. We propose a possible-world se-
mantics for PLGs where the semantics of a PLG is given in
terms of a probability distribution over the set of all the LGs
represented by the PLG.

Definition 3. An LG w = (V,E,A) is a possible world of a
PLG pg = (V ′, E′,PA) if
• V = V ′,
• E = E′, and
• if (x, P, p) ∈ A then (x, P, p, pr) ∈ PA for some pr > 0.
The probability of w is

Pr(w) =
∏

(x,P,p,pr)∈PA∧(x,P,p)∈A

pr

Note that (like much work in AI) the above definition
assumes independence between annotations.

Given a PLG pg , we use pw(pg) to denote the set of all
its possible worlds. It is easy to see that a PLG pg induces
a probability distribution over the set of its possible worlds,
that is,

∑
w∈pw(pg) Pr(w) = 1.

We conclude this section by noting that given any doc-
ument d, we can associate a PLG G(d) with it. Because
FORGE [8] has already shown how to represent the textual
part of a document as a graph, we do not focus on it here.
However, we note that concepts can be extracted from text
using many standard concept extraction methods. FORGE
uses n-grams as concepts and draws two types of edges
between concepts. In FORGE’s “syntactic” edge, there is an
edge between two concepts if they occur within a window
ofW concepts. This edge can be labeled with the probability
that the two concepts occur within a window of size W . In
addition, FORGE introduces a “semantic” notion of edge in
which case, there is an edge between concepts c1, c2 labeled
with the Jaccard distance between the two concepts which
can be thought of as a probability |c1 ∩ c2|

|c1 ∪ c2| . Both these types
of graphs in FORGE are PLGs.

3 THE FAKE PLG GENERATION PROBLEM

In this section, we formally define the Fake PLG Generation
Problem and show that it is intractable. We will develop an

algorithm to approximately solve the Fake PLG Generation
problem in polynomial time in the next section.

Our goal is the following: given a PLG pgo, we want
to generate n (fake) PLGs pg1, . . . , pgn so that an adver-
sary looking at pgo, pg1, . . . , pgn has no clue about which
one was the original PLG. To capture this idea, we re-
quire that for every pair of distinct PLGs taken from
{pgo, pg1, . . . , pgn} their “difference” should be similar.

Adversary Model. We assume the attacker has two distinct
types of people. (a) First, there are computer scientists who
are capable of penetrating the victim enterprise. Given a
set {d0, d1, . . . , dn} where d0 is the original document and
d1, . . . , dn are fakes, we assume the attacker can create
a fully connected network whose nodes are d0, d1, . . . , dn
and where each edge (di, dj) is labeled with the distance
between those two documents according to a given distance
function ∆. In our attack model, we assume that the at-
tacking computer scientists can analyze this network and
find central nodes in it. (b) We assume the attacker also
has domain experts (e.g., in chemistry or in pharmaceutical
design) who can read a document and determine if it is real
or fake. In order to deceive these domain experts, we ensure
that the fakes are “near enough” (according to ∆) to the
original to be credible but sufficiently “far” in order to be
wrong.

This in turn requires defining a distance function ∆ for
PLGs, which can be done in different ways, depending on
the application domain. Rather than committing to a specific
one, we assume ∆ is an arbitrary metric—however, in the
following, we will discuss a concrete distance function that
we used in our experimental evaluation, which is reasonable
enough to be applied in several domains.

Furthermore, we argue that the generation of fake PLGs
should not be done in a completely blind way, as every do-
main has rules saying when LGs are meaningful, and these
rules should play a role in the PLG generation process to
avoid PLGs that make no sense from a domain perspective
(and hence are easily detectable as fake). We illustrate this
factor in the following two examples.

Example 4. Consider again the flowchart domain and in par-
ticular the LG depicted in Figure 6a. It is easy to see that
this LG represents the flowchart reported in Figure 6b, but it
is “inconsistent” in several different respects. For instance, the
upper decision point has only one outgoing flowline, while the
lower one has none.

Example 5. Consider now the algebraic expression domain and
the LG depicted in Figure 7. It is easy to see that it represents the
expression Y + /3+, which does not make much sense.

The two examples above clearly show that, depending
on the domain of interest, an LG might be subject to certain
constraints in order for it to be meaningful. Each applica-
tion domain may impose its own rules on the structure of
valid LGs (as a further example, in the algebraic expression
domain, LGs are expected to be trees).

As a PLG represents a set of possible LGs, each with a
probability, some of them might comply with the domain
constraints, while others might not. To measure the extent
to which a PLG complies with the domain constraints, we
need to look at the LGs it represents, and their probabilities:
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text:	yes

type:	input
text:	Input	N >	1

type: process
text: p =	2

type:	output
text:	Print N is not prime

type:	decision
text:	N >=	p2

type:	decision
text:	N%p=	0

Input	N >	1

p =	2

N%p =	0

N >=	p2

yes

Print N is
not prime

Fig. 6: A (bad) logic graph (left) and the flowchart it repre-
sents (right).

value:	+

value:	3

value:	+value:	/

value:	Y

Fig. 7: A (bad) LG representing a non-well-formed expres-
sion.

a natural approach is to sum the probabilities of the LGs
satisfying the domain constraints, which we define as the
degree of consistency of the PLG (a formal definition will be
provided shortly). Hence, we assume the existence of an
admissibility function ϕ taking as input an LG g and returning
true if g is admissible and false otherwise. Function ϕ is
a means to embed semantic information of the application
domain into our framework and avoid blindly generating a
PLG whose possible worlds are so wrong that the PLG is
easily identifiable as synthetically generated, as illustrated
in the following example.

Example 6. Consider the PLG of Figure 5. It is easy to see
that all its possible worlds are LGs representing valid algebraic
expressions.

Consider now a PLG that is identical to the one of Fig-
ure 5, except that the probabilistic annotations for the bottom-
right vertex, say v, are (v, value, 7, 0.6) and (v, value,+, 0.4).
Clearly, the possible worlds where the probabilistic annotation
becomes (v, value, 7) are valid ones, while those where it becomes
(v, value,+) are not.

We can now define the degree of consistency of a PLG as
the sum of the probabilities of the possible worlds comply-
ing with ϕ.

Definition 4. The degree of consistency of a PLG pg w.r.t. an

admissibility function ϕ is

Cϕ(pg) =
∑

w∈pw(pg)∧ϕ(w)=true

Pr(w).

As stated in the following theorem, computing the de-
gree of consistency is a #P-hard problem.

Theorem 1. Let pg be a PLG and ϕ an admissibility function.
Computing the degree of consistency of pg w.r.t. ϕ is #P-hard,
even when ϕ can be evaluated in polynomial time.

Proof. We show a reduction from #SAT, that is, the problem
of computing the number of satisfying assignments of a
propositional formula, which is a #P-hard problem.

Let Φ be an instance of #SAT, that is, a propositional
formula whose propositional variables are x1, . . . , xn.

We derive a PLG pgΦ = (V,E,PA) and an admissibility
function ϕΦ as follows.

We use only one property value whose domain is
{true, false}. Then, V = {x1, . . . , xn}, E = ∅, and
PA =

⋃
1≤i≤n{(xi, value, true, 0.5), (xi, value, false, 0.5)}.

Notice that each possible world of pgΦ is an LG (V,E,A)
with A = {(xi, value, ti), . . . , (xn, value, tn)}, where the
ti’s are either true or false , and thus it corresponds to a
truth-value assignment over the propositional variables of
Φ. Finally, for every possible world w of pgΦ, we define
ϕΦ(w) as true if its corresponding truth-value assignment
satisfies Φ, false otherwise—notice that this can be verified
in polynomial time.

Clearly, for every possible world w of pgΦ, Pr(w) =
1/2n. Thus, Cϕ(pgΦ) = #Φ/2n, where #Φ is the number of
assignments satisfying Φ.

As already mentioned before, our goal is to generate
highly believable fakes PLGs. In this regard, note that Cϕ

and ∆ play two complementary and different roles.
The degree of consistency Cϕ measures how consistent a

fake PLG is w.r.t. the constraints of the application domain.
Such constraints are rarely inferrable from the original PLG
and thus must be made explicit, which is why we require
ϕ as an input from a domain expert (or ϕ could just be a
piece of code, e.g. a piece of code to detect if an algebraic
expression is syntactically valid or a piece of code to detect
if a flowchart is well formed). It is clear that PLGs with a low
degree of consistency should be avoided as easily detectable
as fake. Thus, the aim of Cϕ is to make sure that PLGs are
believable enough, regardless of the original PLG.

The distance function ∆ measures the distance between
PLGs, with the aim of generating a set of fake PLGs that
along with the original one have a pairwise distance lying
within a given interval. This means that every pair of
distinct PLGs has pretty much the same distance, so as to
prevent attacks such as using network analysis, centroid
computation (or similar methods) to recover the original
PLG. In other words, here the goal is to make sure that it
is sufficiently hard to single out the original PLG from a set
of reasonable ones.

The fake PLG generation problem is defined as follows.

Definition 5. An instance of the Fake PLG Generation Prob-
lem is a tuple 〈pgo, n, [`, u], θ,∆, ϕ〉, where pgo is a PLG, n is
a positive integer, [`, u] is an interval, θ ∈ [0, 1], ∆ is a distance
function between PLGs, and ϕ is an admissibility function.
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A solution is a set of n distinct PLGs pg1, . . . , pgn s.t.

1) every pg i is different from pgo,
2) for every pg i, Cϕ(pg i) ≥ θ,
3) for every pair of distinct PLGs pg ′ and pg ′′ in
{pgo, pg1, . . . , pgn}, ∆(pg ′, pg ′′) ∈ [`, u].

Thus, for a given PLG pgo, we want to find n distinct
PLGs that are (1) different from pgo, (2) with a degree
of consistency no lower than a given threshold θ, and (3)
s.t. for every pair of distinct PLGs, their difference lies in
a given interval [`, u]. It is worth noting that this latter
requirement bounds the distance between every pair of
PLGs in {pgo, pg1, . . . , pgn}, and thus it bounds the dis-
tance between the original and the fakes. More specifically,
the upper bound u is used to impose the requirement
∆(pg ′, pg ′′) ≤ u, which allows users to set a maximum
desired distance between every pair of distinct PLGs. This
in turn means that fake PLGs must differ from the original
one at most of u, so that fake PLGs cannot be too far from
the original, in order to prevent them to be remarkably
different. Likewise, the lower bound ` is used to impose
the requirement ` ≤ ∆(pg ′, pg ′′), which allows users to
set a minimum desired distance between every pair of
distinct PLGs in {pgo, pg1, . . . , pgn}. This also means that
fake PLGs must be “far enough” from the original one.
Clearly, `, u, and ∆ can be arbitrarily chosen depending
on the application and users’ needs.

The following result shows that the fake PLG generation
problem is NP-hard.

Theorem 2. The fake PLG generation problem is NP-hard, even
when ∆ and ϕ can be computed in polynomial time and n = 1.

Proof. We show a reduction from the (NP-hard) 3COL-
ORABILITY problem to the problem of deciding whether an
instance of the fake PLG generation problem has a solution.
3COLORABILITY is the problem of deciding whether a graph
is 3-colorable, i.e., whether we can assign one of three colors
to every vertex in such a way that no two adjacent vertices
have the same color.

Let G = (V,E) be an instance of 3COLORABILITY, that
is, a graph. Let V = {v1, . . . , vn}. We use only one property
color with dom(color) = {c1, c2, c3}. We derive an instance
〈pgo, n, [`, u], θ,∆, ϕ〉 of the fake PLG generation problem
as follows:

• pgo = (V,E,PA), where PA = PVA ∪ PEA with

PVA =
⋃

1≤i≤n{ (vi, color, c1, 1/3),
(vi, color, c2, 1/3),
(vi, color, c3, 1/3)}

and PEA =
⋃

(vi,vj)∈E{((vi, vj), color, c1, 1)}.
• n = 1.
• [`, u] = [0, 0].
• θ = 1/3n.
• For every pair of PLGs pg ′ = (V ′, E′,PA′) and pg ′′ =

(V ′′, E′′,PA′′),

∆(pg ′, pg ′′) =


0 if V ′ = V ′′, E′ = E′′, and
{(v, P, p,Pr) | v ∈ V ′} =
{(v, P, p,Pr) | v ∈ V ′′}

1 otherwise.

• For every LG g = (V ′, E′, A′), ϕ(g) is true iff A′ does
not contain two distinct annotations (v1, color, ci) and
(v2, color, ci) s.t. (v1, v2) or (v2, v1) belongs to E′, for
some ci ∈ dom(color).

Then, G is 3-colorable iff the above instance of the fake PLG
generation problem has a solution.

(⇒) Suppose G is 3-colorable. Let pg1 be a PLG that
is identical to pgo except that a probabilistic annotation
(e, color, c1, 1) of pg is changed into (e, color, c2, 1) in pg1 for
an arbitrary edge e ∈ E. Below we show pg1 is a solution of
the fake PLG generation problem instance above.

Obviously, pg1 is different from pgo.
Consider a possible world g = (V,E,A) of pg1 s.t. for a

valid 3-coloring of G, (v, color, ci) ∈ A iff ci is the color of v
in the 3-coloring—the existence of a valid 3-coloring ensures
the existence of such a world. Clearly, ϕ(g) is true, and since
Pr(g) = 1/3n, then Cϕ(pg1) ≥ θ.

Finally, notice that ∆(pgo, pg1) = 0, as pgo and pg1 have
the same vertices and edges and their vertex probabilistic
annotations are the same. Thus, ∆(pgo, pg1) ∈ [`, u] = [0, 0].

(⇐) Suppose the instance above of the fake PLG gen-
eration problem has a solution, say pg1. By definition of
solution and by construction of the instance, ∆(pgo, pg1) has
to be 0, which means that vertices, edges, and vertex proba-
bilistic annotations of pgo and pg1 are the same. Thus, each
possible world of pg1 corresponds to a color assignment for
the vertices of G.

In order for pg1 to be a solution, Cϕ(pg1) ≥ θ must holds
true, which means that there must be a world of pg1 (i.e., a
color assignment for the vertices of G) satisfying ϕ, that is,
corresponding to a valid 3-coloring.

4 A GREEDY ALGORITHM

Since exactly solving the fake PLG generation problem is
likely to take inordinate amounts of time because of the
NP-hardness result, in this section we propose a greedy
algorithm to solve the problem approximately. The basic
idea is as follows.

1) The algorithm starts with a set Res containing only the
original PLG and iteratively adds one more PLG to Res
(this will eventually be the output of the algorithm).

2) At each iteration, one PLG is generated (and added to
Res) by applying an operator to one of the PLGs in
Res . The choice of the operator and of the PLG to be
modified is guided by ∆ and Cϕ.

In the rest of this section, we first define a suite of
operators to generate PLGs. We then discuss a heuristic
to properly choose which operator should be applied to
which PLG (according to ∆ and Cϕ). Finally, we present
the complete algorithm.

4.1 PLG Operators
To manipulate PLGs, we consider operators that add, delete,
and modify vertices and edges. Recall that PLGs embed
semantic information via (probabilistic) annotations, that
is, vertices and edges are associated with coherent sets of
probabilistic annotations (see Section 2 and Definition 2),
which must be taken into account by the aforementioned
operators. In particular, a new vertex/edge must come
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along with a coherent set of probabilistic annotations, while
the modification of existing probabilisitic annotations must
ensure coherency is preserved.

More specifically, we introduce the following operators
to manipulate PLGs.
• Add a new vertex/edge along with a coherent set of

probabilistic annotations for the vertex/edge.
• Delete a vertex, and all its incident edges (along with

their probabilistic annotations).
• Delete an edge (along with its probabilistic annota-

tions).
• Modify the probabilistic annotations for a vertex/edge
x and a property P , while preserving coherence (i.e.,
modify the probability distribution over the possible
values of P for x).

More formally, let pg = (V,E,PA) be a PLG. We assume
the existence of a setO of possible operations of the following
form:
• AddVertex(v,PA′), where v is a new vertex and PA′

is a coherent set of probabilistic annotations for v. The
result of applying it to pg is the following PLG:

(V ∪ {v}, E,PA ∪ PA′).

• AddEdge(e,PA′), where e is a new edge and PA′ is a
coherent set of probabilistic annotations for e. The result
of applying it to pg is the following PLG:

(V,E ∪ {e},PA ∪ PA′).

• DeleteVertex(v), where v ∈ V . The result of applying it
to pg is the following PLG:

(V \ {v}, E,PA \ {(v′, P ′, p′, pr ′) ∈ PA | v′ = v}).

Furthermore, all edges incident to v are deleted as
defined in the next item.

• DeleteEdge(e), where e ∈ E. The result of applying it
to pg is the following PLG:

(V,E \ {e},PA \ {(e′, P ′, p′, pr ′) ∈ PA | e′ = e}).

• Modify(x, P,PA′), where x ∈ V ∪ E, P ∈ P, and PA′ is
a coherent set of probabilistic annotations for x and P .
The result of applying it to pg is the following PLG:

(V,E,PA\{(x′, P ′, p′, pr ′)∈PA | x′ = x, P ′ = P}∪PA′).

The result of applying an operation op ∈ O to a PLG pg
is denoted as op(pg). 4

4.2 Heuristic

As already mentioned before, the choice of which operation
should be applied to which PLG should be guided by ∆ and
Cϕ. We now provide a heuristic to make such a decision.
First, we define how ∆ is taken into account to guide the
decision. We then propose an approximation algorithm to
compute Cϕ (recall that the exact computation is a #P-hard
problem). Finally, we define a heuristic that combines the
two criteria.

4. It is important to note that it is possible to expand the PLG
framework to include additional operations. We define a core set of
such operations for now that others may expand as needed.

Taking ∆ into account. Given two PLGs pg and pg ′, a
distance function ∆, and an interval [`, u], we define

dist∆(pg , pg ′, [`, u])=


0 if ∆(pg , pg ′) ∈ [`, u],
`−∆(pg , pg ′) if ∆(pg , pg ′) < `,
∆(pg , pg ′)− u if ∆(pg , pg ′) > u.

Thus, dist∆(pg , pg ′, [`, u]) provides one way to measure
the distance (how far) between pg and pg ′ from the interval
[`, u].

Approximating CϕCϕCϕ. As stated in Theorem 1, computing
the degree of consistency Cϕ(pg) of a PLG pg w.r.t. an
admissibility function ϕ is a #P-hard problem (even when
ϕ can be evaluated in polynomial time). Recall that Cϕ(pg)
is the sum of the probabilities of the possible worlds of pg
satisfying ϕ. Clearly, the high complexity comes from the
exponential number of possible worlds (in the worst case).
We propose to approximate Cϕ(pg) by looking only at the
top-k most probable possible worlds. More formally, we use
pwk(pg) to denote the set of top-k most probable possible
worlds of pg . Then, our goal is to compute

Ck
ϕ(pg) =

∑
w∈pwk(pg)∧ϕ(w)=true

Pr(w).

Clearly, resorting to Ck
ϕ(pg) is useful if we can devise an

algorithm to compute it without enumerating all possible
worlds. An optimal algorithm for this purpose should look
at the possible worlds in pwk(pg) only, and avoid the
enumeration of the remaining ones altogether. Thus, here
the challenge is how to enumerate exactly (that is, all and
only) the top-k most probable possible worlds of pg . Algo-
rithm APPROXIMATETOPKCONSISTENCYDEGREE (cf. Algo-
rithm 1) achieves this goal and exactly computes Ck

ϕ(pg).
It takes as input: a PLG pg = (V,E,PA), an admissibility
function ϕ, and a positive integer k > 0, and it computes
Ck

ϕ(pg). Specifically, it iteratively adds the k most probable
worlds to pwk(pg), and eventually uses them to compute
Ck

ϕ(pg). The key aspect of the algorithm is how it determines
the next most probable possible world, which allows it
to consider only the possible worlds needed to compute
Ck

ϕ(pg). We go into the details in more depth below.
The set S stores tuples of the form (x, P,PAnn), where

x is either a vertex or an edge of pg , P is a property, and
PAnn is a list containing all probabilistic annotations of pg
for x and P , sorted by decreasing Pr value (lines 2–6).

In lines 7–12, the most probable world (V,E,A1) is com-
puted as follows: for each vertex/edge x and property P ,
the value of P for x is the one with the highest probability—
we use PAnn[j] to denote the j-th element of list PAnn .

The remaining possible worlds are then computed in
the for loop of lines 13–20. Specifically, at each iteration a
possible world (V,E,Ai) is computed. This new possible
world is obtained from the possible world of the previous
iteration by modifying exactly one value for some ver-
tex/edge x∗ and property P ∗. These are chosen from S so
that PAnn[0].Pr/PAnn[1].Pr is minimum across all (ver-
tex/edge,property) pairs (line 14), where PAnn[0].Pr (resp.
PAnn[1].Pr ) denotes the probability value in the proba-
bilistic annotation PAnn[0] (resp. PAnn[1]). This represents
the greedy choice step. Thus, p0 and p1 are the probability
values of PAnn∗[0] and PAnn∗[1], respectively (lines 15–16).
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Algorithm 1 APPROXIMATETOPKCONSISTENCYDEGREE

Input: A PLG pg , an admissibility function ϕ, and k > 0.
Output: Ck

ϕ(pg).
1: Let pg = (V,E,PA);
2: S = ∅;
3: for each x ∈ V ∪ E and P ∈ P do
4: Let PAnn = {(x, P, p,Pr)∈PA} be sorted by decreas-

ing Pr ;
5: S = S ∪ {(x, P,PAnn)};
6: end for
7: A1 = ∅;
8: for each (x, P,PAnn) in S do
9: Let (x, P, p,Pr) = PAnn[0];

10: A1 = A1 ∪ {(x, P, p)};
11: end for
12: pwk(pg) = {(V,E,A1)};
13: for i = 2 to k do
14: (x∗, P ∗,PAnn∗) = arg min

(x,P,PAnn)∈S
{PAnn[0].Pr/PAnn[1].Pr};

15: Let (x∗, P ∗, p0,Pr0) = PAnn∗[0];
16: Let (x∗, P ∗, p1,Pr1) = PAnn∗[1];
17: Delete PAnn∗[0] from PAnn∗;
18: Ai = Ai−1 \ {(x∗, P ∗, p0)} ∪ {(x∗, P ∗, p1)};
19: pwk(pg) = pwk(pg) ∪ {(V,E,Ai)};
20: end for
21: return

∑
w∈pwk(pg)∧ϕ(w)=true Pr(w);

After this, the first element of PAnn∗ is deleted (line 17), and
the new possible world (V,E,Ai) is obtained from the one
of the previous iteration (V,E,Ai−1) by replacing the value
p0 (for x∗ and P ∗) with p1 (line 18). The new world is then
added to pwk(pg) (line 19). Eventually, worlds in pwk(pg)
are used to compute Ck

ϕ(pg) (line 21).
We now state the correctness theorem and assess the

complexity of Algorithm 1.

Theorem 3. Given a PLG pg , an admissibility function ϕ, and a
positive integer k > 0, Algorithm 1 correctly computes Ck

ϕ(pg).

Proof. First of all, notice that each possible world is de-
rived from pg by choosing one value for each vertex/edge
x ∈ V ∪ E and property P ∈ P among those in PA, and
the probability of the possible world is the product of the
values’ probabilities.

Clearly, (V,E,A1) is the most probable world, as it picks
the highest probability for each x ∈ V ∪ E and P ∈ P.

Then, by induction on i (i > 1), we can show that each
subsequent possible world wi is the i-th most probable one
if wi−1 is the (i − 1)-th most probable one. World wi is
constructed from wi−1 as follows: for some vertex/edge
x ∈ V ∪E and property P ∈ P , their value p0 having prob-
ability Pr0 is replaced with a value p1 having probability
Pr1 provided that Pr0/Pr1 is minimum across all possible
replacements. We show that this (somewhat greedy) choice
is indeed optimal for the purpose of finding the next most
probable world. By contradiction, suppose there is a world
w′i s.t. Pr(w′i) > Pr(wi). Suppose that w′i is derived from
wi−1 by replacing a value p′0 having probability Pr ′0 with
a value p′1 having probability Pr ′1, for some vertex/edge
x′ ∈ V ∪ E and property P ′ ∈ P . Then, Pr(wi) =

Prprev × Pr ′0 × Pr1 and Pr(w′i) = Prprev × Pr0 × Pr ′1,
where Prprev is the product of the probabilities for all
vertices/edges and properties except (x, P ) and (x′, P ′) in
wi−1. As Pr(w′i) > Pr(wi), then (Pr ′0/Pr

′
1) < (Pr0/Pr1),

which is a contradiction.

Proposition 4. The worst-case time complexity of Algorithm 1
is O((|V ∪E| · |P|) · (k+PAnnmax · logPAnnmax ) + k · fϕ),
where fϕ is the worst-case time complexity of evaluating ϕ, and
PAnnmax = max

x∈V ∪E,P∈P
{|{(x, P, p,Pr) ∈ PA}|}.

Proof. Obviously, lines 1–2 have costO(1). The for each loop
on lines 3–5 performs |V ∪E|·|P| iterations. At each iteration
PAnn is sorted with cost O(PAnnmax · logPAnnmax ), as its
length is at most PAnnmax , while line 5 requires constant
time. Thus, the overall cost of the for each loop on lines 3–5
is O(|V ∪ E| · |P| · PAnnmax · logPAnnmax ).

Line 7 has cost O(1). The for each loop on lines 8–11
performs |V ∪E|·|P| iterations, where each iteration requires
constant time; thus the overall cost isO(|V ∪E|·|P|). Line 12
has cost O(1).

The for loop on lines 13–20 performs k − 1 iterations.
At each iteration, lines 14–19 are executed. Line 14 requires
finding a minimum value across all tuples in S , which are
|V ∪ E| · |P|, which is thus the cost of line 14. Lines 15–19
require constant time. Thus, the overall cost of lines 13-20 is
O(k · |V ∪ E| · |P|).

Line 21 looks at k possible worlds and for each of them
it evaluates ϕ, thus its overall cost is O(k · fϕ).

The overall cost of the algorithm is thus

O(|V ∪E|·|P|·PAnnmax ·logPAnnmax+k·|V ∪E|·|P|+k·fϕ),

which can be rewritten as in the claim.

We point out that a variant of APPROXIMATETOPKCON-
SISTENCYDEGREE might additionally take as input a thresh-
old θ so that the algorithm halts as soon as it finds k′ ≤ k
possible worlds satisfying ϕ and whose overall probability
is at least θ.

Heuristic definition. We are now ready to define our
heuristic, which combines dist∆ and Ck

ϕ. To keep the no-
tation simple, the distance and admissibility functions ∆
and ϕ are implicit and omitted in the H notation below.
Furthermore, given a value Ck

ϕ(pg) and θ ∈ [0, 1], we define

||θ − Ck
ϕ(pg)|| =

{
0 if Ck

ϕ(pg) ≥ θ
θ − Ck

ϕ(pg) otherwise

Let pg be a PLG, PG a set of PLGs, k > 0, θ ∈ [0, 1], and
[`, u] an interval. We defineH(pg ,PG , k, θ, [`, u]) as follows:

w1 · (||θ − Ck
ϕ(pg)||) + w2 · (

∑
pg′∈PG

dist∆(pg , pg ′, [`, u]))

where w1 and w2 are used to weight the contributions
of the degree of consistency and of the distance function,
respectively.

The lower the H value, the better the choice of pg , as
this corresponds to a Ck

ϕ value closer to (or above) θ—i.e.,
the (approximate) degree of consistency is closer to or above
the threshold—and lower dist∆ values—i.e., the distances of
pg from the PLGs in PG are not far from the desired interval
[`, u].
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Algorithm 2 GREEDYFAKEPLGS

Input: An instance 〈pgo, n, [`, u], θ,∆, ϕ〉 of the fake PLG
generation problem and k > 0.

Output: PLGs pgo, pg1, . . . , pgn.
1: Res = {pgo};
2: for i = 1 to n do
3: (op∗, pg∗) = arg min

op∈O,pg∈Res,
op(pg)/∈Res

H(op(pg),Res, k, θ, [`, u]);

4: pg i = op∗(pg∗);
5: Res = Res ∪ {pg i};
6: end for
7: return Res ;

Proposition 5. The worst-case time complexity of computing H
isO(|PG |·f∆+fCk

ϕ
), where f∆ is the worst-case time complexity

of computing ∆ and fCk
ϕ

is the wort-case time complexity of
computing Ck

ϕ (cf. Proposition 4).

Proof. Straightforward.

4.3 The GREEDYFAKEPLGS Algorithm
To solve the fake PLG generation problem we propose the
GREEDYFAKEPLGS algorithm (cf. Algorithm 2) which takes
an instance of the fake PLG generation problem along with
a positive integer k (which is used for the computation of
Ck

ϕ when the H value is calculated) as input. It returns as
output the original PLG along with a set of n fake PLGs.

The algorithms starts by initializing a set Res to contain
only the original PLG pgo (line 1)—Res will eventually be
the output (see line 6). It then performs n iterations (lines 2–
5), and at each iteration, it chooses the operation op∗ and
the PLG pg∗ from Res that minimize the heuristic value H
(line 3). The application of op∗ to pg∗ yields the new PLG
pg i (line 4), which is added to Res (line 5).

The following simple proposition states the time com-
plexity of Algorithm 2.

Proposition 6. The worst-case time complexity of Algorithm 2
is O(n2 · |O| · fH), where fH is the wort-case time complexity of
computing H (cf. Proposition 5).

Proof. The algorithm performs n iterations. At each iteration
it has to compute H for at most n · |O| candidate PLGs, as
there are at most n · |O| pairs of operations and (source)
PLGs to be considered. It is straightforward to see that all
remaining instructions can be performed in constant time.

5 A COMPLETE EXAMPLE

In this section, we illustrate our framework by showing its
behavior on an excerpt taken from a real patent.

Figure 8 shows the overall process, which consists of:
(Step 1) mapping the snippet of the document into a PLG,
(Step 2) generating fake PLG(s), and (Step 3) mapping
fake PLG(s) back into (fake) documents. For simplicity of
exposition, only one fake document is shown for this patent.

Figure 8(a) shows an excerpt taken from a real patent5.
containing 3 types of diverse content: text, an equation,

5. https://patents.google.com/patent/US20170118123A1/en

and a flowchart. More importantly, these three types of
content share common pieces of information. For instance,
sn appears in both the text and the equation, while vt and
vu appear in both the equation and the flowchart.

A possible PLG for the document of Figure 8(a) is
reported in Figure 8(b). For the sake of readability, we
assumed that each property has one single value (the one
reported next to the property) with probability 1, and we
omitted such probability values. Dashed boxes highlight
how the text, flowchart, and equation have been modeled,
even though there are vertices common to the different
kinds of content.

Figure 8(c) shows a fake PLG for the one in Figure 8(b).
Notice that sn has been modified into rt, the vertex with
value: ˆ2 has been added, the edge at the bottom has been
deleted, etc.

The document corresponding to the fake PLG is shown
in Figure 8(d).

6 IMPLEMENTATION AND EXPERIMENTAL EVALUA-
TION

Any implementation of PLGs should broadly consist of two
parts: a part to transform an original document d0 into a
PLG pg0 and a part to map the fake PLGs pg1, . . . , pgn into
fake documents d1, . . . , dn according to the nomenclature in
Figure 1. Our current PLG system has fully implemented
the second part, namely the mapping from the fake PLGs
pg1, . . . , pgn into fake documents d1, . . . , dn. For the first
part, we do have code from [8] to map the textual part of a
document into graph syntax which can be easily extended to
map onto PLGs, but the code needed to transform diagrams,
for instance, into PLGs requires considerable effort in image
processing. We are currently pursuing this, but as this poses
a whole separate challenge, we defer it to future work.

In this section, we report on an experimental evaluation
we performed on real patents to assess the effectiveness
of our approach. We first detail the experimental setup,
then describe our evaluation process, and finally present
experimental results.

6.1 Experimental Setup

We applied the GREEDYFAKEPLGS algorithm to real-world
patents in the Computer Science domain. Specifically, we
collected 10 patents on Google Patents, each consisting of
general text, flowcharts, equations, and other kinds of con-
tent and manually constructed their PLG pg0 representation
(as per Figure 1). The remainder of the GREEDYFAKEPLGS
algorithm is fully automated.

We now describe how we defined ∆, ϕ, and O in our
setting. The distance function ∆ was defined to measure
both the topological difference between two PLGs (i.e.,
differences w.r.t. the vertex and edge sets) and differences
in the probabilistic annotations (i.e., for each vertex/edge
and property belonging to both PLGs, we measured the dif-
ference between their probability distributions). The formal
definition of ∆ between two PLGs pg1 and pg2 is as follows.
We sum together the probability difference of each value
p for each property P of each vertex and edge. Suppose
pg1 and pg2 are PLGs having the form (V1, E1,PA1) and

https://patents.google.com/patent/US20170118123A1/en
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Fake Document Generation Process:
STEP 1:

Mapdoc intoPLG

(a) ⇒ (b)
=⇒

STEP 2:
Generate fakePLG

(b) ⇒ (c)
=⇒

STEP 3:

Map (fake)PLG into (fake)doc

(c) ⇒ (d)

Receive IP Packets from 
trasmitting side network

START

Calculate amount of 
communication of TCP 

communication vt

Calculate amount of 
communication of UDP 

communication vu

…

The data diode device … the transmission
capability sn … with the following equation:

(vt+vu) x sn x 100

…

…

(a) Original patent excerpt.

STEP 1:
Mapdoc
intoPLG

=⇒

type: input

type: process

type: simple-text
text: Calculate amount
of communication of 
TCP communicationtype: process

type: process

value: x

value: +

value: vuvalue: vt

value: sn

value: x

value: 100

…

type: simple-text
text: Calculate amount of communication
of UDP communication

type: content type: simple-text
text: START

type: simple-text
text: Receive IP Packets from 
trasmitting side network

type: content

type: content

type: content

type: sentence

type: sentence

position: 1

position: 2

position: 1

position: 2

type: sentence

type: simple-text
text: The data diode device … 
the transmission capability

type: simple-text
text: … with the 
following equation:

type: equation

position: 1

position: 2

position: 3

position: 4

Flowchart

Text

Equation

(b) PLG.ww� STEP 2:
Generate fakePLG

Receive IP Packets from 
trasmitting side network

START

Calculate amount of 
communication of TCP 

communication ur

Calculate amount of 
communication of UDP 

communication

…

The data diode device … the transmission
capability rt … with the following equation:

(ur+vu2) x rt + 1000

…

…

(d) Fake patent excerpt.

STEP3:
Map (fake)PLG
into (fake)doc

⇐=

type: input

type: process

type: simple-text
text: Calculate amount
of communication of 
TCP communicationtype: process

type: process

value: x

value: +

value: ^2value: ur

value: rt

value: +

value: 1000

…

type: simple-text
text: Calculate amount of communication
of UDP communication

type: content type: simple-text
text: START

type: simple-text
text: Receive IP Packets from 
trasmitting side network

type: content

type: content

type: content

type: sentence

type: sentence

position: 1

position: 2

position: 1

type: sentence

type: simple-text
text: The data diode device … 
the transmission capability

type: simple-text
text: … with the 
following equation:

type: equation

position: 1

position: 2

position: 3

position: 4

value: vu

(c) Fake PLG.

Fig. 8: Fake document generation process.

(V2, E2,PA2), respectively. Suppose (x, P, p,−) ∈ PA2 and
there is no probabilistic annotation of the form (x, P, p,−) ∈
PA1, then we add (x, P, p, 0) to PA1 and vice-versa. In
this case, PA1 and PA2 would have the same number of
elements. We then define:

∆(pg1, pg2) =
∑

(x,P,p,Pr1)∈PA1∧(x,P,p,Pr2)∈PA2

|Pr1 − Pr2|.

Since our dataset consists of patents with flowcharts,
algebraic expressions, equations, etc., ϕ was defined to cap-

ture natural properties that characterize LGs modeling such
kinds of content. For instance, for flowcharts rules include:
the LG is connected, vertices corresponding to input (resp.
output) shapes have no incoming (resp. outgoing) edges,
vertices corresponding to decision shapes have at least one
incoming edge and at least two outgoing edges, etc. As a
further example, for LGs representing algebraic expressions
typical rules are: intermediate vertices correspond to opera-
tors, leaves correspond to operands, etc.

The set O of possible operations was defined so as to
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allow arbitrary vertex/edge deletions as well as arbitrary
insertions and modifications of vertices and edges using
randomly generated probabilistic annotations.

6.2 Evaluation Process

Since the space of parameter settings is huge and evaluating
each of them requires time-consuming manual intervention,
we designed a two-step evaluation process: in the first
step we determine the three best parameter settings; in the
second step, we use them to evaluate the effectiveness of our
approach. We invited 20 human subjects with expertise in
Computer Science, 10 for the first step and 10 different ones
for the second step. They were recruited via a public call at
the Department of Electrical Engineering and Information
Technology of the University Of Naples ”Federico II” (Italy).
All subjects have a Master or a PhD degree in Computer
Science, with age in the range [24,42] (average age 27), 15
males and 5 females, with high-level proficiency in English.

We asked subjects to select the top 3 documents they
felt were the original patent, ranking their choices. The
documents (the original one + the fakes) were displayed in
randomized order. The human subjects were informed that
only one of the documents was a real, original patent, while
the remaining were all fakes generated from the original.

Step 1. We selected one patent and generated 3 fake
documents for each of the 18 parameter settings obtained
by varying k, θ, and [`, u] as follows:

• k ∈ {4, 8, 16};
• θ ∈ {0.5, 0.75};
• [`, u] ∈ {[0, 0.25], [0.25, 0.5], [0.5, 0.75]};

In total, for each original document, there are 54 fake
documents presented to human reviewers. As already men-
tioned, we invited 10 human subjects and asked them to
select the top 3 documents they felt were the original patent.
We call these the user’s first, second, and third choices in
their effort to find the real document. We also asked them to
rank their choices based on the subject’s confidence of the
document being original. The r-th choice is correct if it is the
original document—otherwise the users were deceived and
chose a fake document, thinking it is the real one. We tested
r = 1, 2, 3 as well as a case we call top-3 in which the user’s
choice was deemed correct if any one of his top 3 choices
was the real document.

Because there were 10 original documents in our corpus,
this meant that our subjects had to look through a total
of 540 documents which is a very large task for humans.
Therefore, we did Step 1 experiment on just one patent.

In order to identify the 3 best parameter settings, we
compared the 18 settings in terms of their Deception-Lift
(DLIFT ), which is defined as follows.

The DLIFT of a parameter setting can be computed
w.r.t. the first, second, and third choice, as well as the
top-3 choices. For a parameter setting and the r-th choice
(r ∈ {1, 2, 3, top-3}), we first compute the probability that
the fake patents generated by this parameter setting are
selected by the user as the r-th choice in experiments. The
DLIFT of that parameter setting is obtained via dividing
it by the probability that the fake patents generated by this
parameter setting are selected as the r-th choice in a random

TABLE 1: Deception-Lift across 10 participants in Step 1 for
the best 3 parameter settings.

DLIFT (Step 1)
1st choice 2nd choice 3rd choice Top-3

Best 3.6 1.8 1.8 2.5
Second-best 1.8 3.8 1.8 2.5
Third-best 1.8 3.8 1.8 2.5

choice selection. A DLIFT greater than 1 means the decep-
tion is working. The higher the DLIFT value, the better
the deception performance of the corresponding parameter
setting. We want to choose the best 3 parameter settings
with the highest DLIFT value from Step 1 experiment, and
use them for the next step.

Step 2. The aim of the second step is to assess how our
approach can prevent discovery of the original documents
using the 3 best parameter settings identified previously in
Step 1. Specifically, for each of the 10 original documents,
we generated 3 fake documents with each of the 3 best
parameter settings. In total, there are 9 fake versions of each
original document. We invited 10 human subjects to review
the 10 versions (9 fakes and 1 original) of each of the 10
original documents. They were again asked to select the top
3 documents they felt were the original document, and rank
them based on subject’s confidence of the document being
original.

We define a metric called Deception-Rate (DR) to evaluate
how our proposed approach can deceive human subjects.
For each human subject h and each original document
d, DR(h, d, r) is the probability that a fake document is
selected as the r-th choice by human subject h. Furthermore,
for each r-th choice, we can compute the average DR
of each subject (resp. each document) over all documents
(resp. all subjects), i.e., DRr

h =
∑

dDR(h, d, r)/10 (resp.
DRr

d =
∑

hDR(h, d, r)/10).
We analyze the distribution of DRr

h and DRr
d in order to

quantify how well GREEDYFAKEPLGS achieves the goal of
deception w.r.t. different human subjects and documents.

6.3 Evaluation Results
Step 1. In total, fake documents generated by 4 of the
18 parameter settings were never selected as the top-3
choices by participants, and hence all their DLIFT values
are 0. We ranked parameter settings according to their top-3
Deception-Lift. If two parameter settings have the same top-
3 DLIFT , we rank them according to their first, second and
third choice DLIFT respectively.

Table 1 shows the DLIFT values for the best 3 parameter
settings. They achieve the same performance over top-3
choices, but the best one has a higher DLIFT w.r.t. the first
choice. The second and third best parameter settings actu-
ally have identical performance. While DLIFT = 1 means
the performance is the same as random selection, we can
conclude that all of the 3 parameter settings perform much
better in deceiving a user (i.e., the individual committing
IP theft) than with random selection. In fact, some of the
parameter settings are almost 4 times better at successful
deception of the adversary than random choice.

Step 2. As already mentioned, the three best parameter
settings reported in Table 1 are used for the second step.
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TABLE 2: Deception-Rate in Step 2 across the human subjects and the set of original documents.

DR (Step 2)
DRr

h across H mean(std.) DRr
d across D mean(std.)

1st choice 2nd choice 3rd choice Top-3 1st choice 2nd choice 3rd choice Top-3
96% (0.05) 95% (0.08) 93% (0.07) 84% (0.16) 96% (0.05) 95% (0.05) 93% (0.05) 84% (0.07)

To see how the PLG approach can deceive attackers and
prevent them from identifying the original document, we
computed the deception rates DRr

h and DRr
d for the first,

second, and third choice as well as the top-3 choices. In
particular, we computed their mean and standard deviation
respectively across the human subjects H and across the set
of original documents D. The results are reported in Table 2.
For instance, consider the case across H . Our PLG-based
approach can fool the attackers very well:

1) In 96% of the cases (with a standard deviation of 0.05),
the document that users select as the top choice as being
real is in fact fake, suggesting that our PLG approach is
successful at deceiving users.

2) Likewise, in 95% (resp. 93%) of the cases—with a
standard deviation of 0.08 (resp. 0.07), the document
they select as the second (resp. third) choice is also
fake, again demonstrating that our approach has strong
deception ability.

3) When we look at the Top-3 column in Table 2, we see
that even if we assume the human subject is correct
when any of his top 3 guesses is right, the PLG al-
gorithm is able to deceive him 84% of the time (0.16
standard deviation).

In addition, we can see that the standard deviation across
the documents D is lower than that across the human
subjects H , which suggests that our PLG-based approach
achieves similar performance in achieving deception on
different documents.

Discussion. An interesting point is that if the adversary
was making a random guess, then the deception rate for the
“Top-3” choice would be 70% as opposed to the 84% we
are seeing, which suggests that it might be better for the
adversary to guess randomly. The results suggest that the
adversay is not guessing randomly—rather they appear to
be using certain cues so that their 3 top guesses are corre-
lated rather than independent which is why the deception
rate actually exceeds 70%. This suggests either that our de-
ception is working very well or that the adversary’s guesses
are correlated. They make a mistake in their first guess and
then make the same kind of mistake in the second and third
choices, suggesting that there is some inherent psychological
logic that guides their choice of which documents are real.
We will examine this in future work.

7 RELATED WORK

Cyber-deception has been extensively used in different con-
texts during the past several years [18]. For example, in the
digital music industry, fake recordings containing terrible
music have been generated in order to dissuade users from
downloading unauthorized songs [13].

Deception has also been studied for files/documents
[24], [21], [8], software code [14], and at the systems level
[10], [9], [22]. A honey-pot scheme is proposed by [24],

which distributed decoy honey files throughout the system
so that system security officers are alerted as soon as an at-
tacker breaks into the system and accesses a honey file (e.g.,
password.txt). [21] develop an automated system to trans-
late the text into another language. Meanwhile, untranslat-
able but enticing nouns (such as company names, hot topics,
and bogus login information) are sprinkled throughout the
text increasing the probability that the attacker will try to
steal the file. [14] works on deception at the code level and
generates fake but believable Java code with techniques like
obfuscation. A multi-layer deception system that provides
in depth defense against sophisticated attacks is designed
by [22].

The closest work to this paper is that of [8] which is
the first paper to propose the use of fake document gener-
ation as a way of mitigating IP theft. Their FORGE system
uses meta-centrality metrics to identify key features to be
replaced in the text of the document. However, because it
is text only, their FORGE is not capable of making changes
consistently across the different types of components (text,
equations, graphs, diagrams/figures) which may be present
in a technical document. This is why we introduce proba-
bilistic logic graphs and show that they can represent these
diverse types of components. Because the techniques used
in this paper manipulate and reason with PLGs in order to
generate fake documents, they are very different and much
broader than the work in [8].

Meanwhile, there are also works on deception detection
for the purpose of detecting fraud on document, code
or text [1], [7], [20]. For instance, [1] exploits linguistic
features of written documents to detect stylistic deception
and distinguish deceptive documents from original ones.
[7] investigate machine learning methods to de-anonymize
source code authors of C/C++ using coding style. [20]
presents a survey of fake news detection from a data mining
perspective.

All of the above works differ from the work reported
in this paper because they do not uniformly treat the multi-
modal nature of technical documents. Today, technical docu-
ments contain not just text, but diagrams, charts, equations,
tables, and more. These different components of a technical
document are usually linked together. For instance, a figure
may contain some phrases or terms that are used elsewhere
in the document. For a fake document to be believable,
concepts/terms replaced in one component of a document
must be consistently replaced in other components. None of
the works above can deal with heterogeneous information
of documents consisting of charts, equations, tables, etc.,
which we can model with PLGs and treat in a single, unified,
theoretical framework.

There has also been work on understanding and rea-
soning about diagrams. [16] consider geometry questions,
that is, textual descriptions accompanied by diagrams, and
address the problem of diagram understanding, which con-
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sists of identifying visual elements in the diagram, their
locations, their geometric properties, and aligning them to
corresponding textual descriptions. A step further is made
in [17] by trying to solve SAT geometry questions. [12])
identify the structure of a diagram and the semantics of its
constituents and their relationships.

Reasoning with diagrams has been addressed in [3], [4],
[2], [5]. Specifically, diagrams are seen as two-dimensional
grids of “tesserae” taking values from a color scale. Opera-
tors for combing diagrams are proposed, which essentially
perform a tesserae-wise combination of the color values of
diagrams.

[23] address the problem of understanding plant dia-
grams by leveraging both diagrams and explanation text
accompanying them. Thus, the goal is similar to [16], but in
a different domain.

[11] present a system supporting the interactive con-
struction of diagrammatic proofs, which are used to auto-
matically derive a generalized proof.

There are several differences between this paper and the
aforementioned ones. First of all, none of them address the
problem of generating fake documents or fake diagrams.
Second, most of the works above target specific domains
(e.g., geometry, plant domain) and none of them propose a
unifying formalism to express different kinds of diagrams
in a variety of application domains as well as uncertainty,
like we do.

8 CONCLUSION

The use of cyber-attacks for stealing the intellectual property
of companies is growing and is now a frequent news item in
major news media [15], [19]. Furthermore, IP theft is often
executed as an “Advanced Persistent Threat” or APT attack
in which the adversary penetrates an enterprise network
and then slowly exfiltrates data over a long period in order
to avoid detection. A Symantec study [6] reports that zero-
day attacks are detected on average only in 312 days, a
very long time for the attacker to steal valuable IP from
the victim.

Past work [24], [14], [21] suggested the placement of
decoy documents that entice a reader to access them—
when accessed, system managers are notified. The goal is
detection of an adversary. In contrast, [8] was one of the
first efforts to suggest the automatic generation of fake
documents so that when the adversary steals the documents,
he faces additional costs, namely the cost of identifying
which documents he stole are real and which ones are fake.
This imposes additional financial costs and frustration on
the adversary and also gives the victim organization more
time to take appropriate action. Our paper continues this
line of work by recognizing that past work only modifies the
textual part of a document without considering the fact that
equations, diagrams/figures, flowcharts, graphs and chart
can all be parts of the document and that they must be
consistently modified.

In this paper, we have first proposed the new concept
of Probabilistic Logic Graphs (PLGs) and showed that PLGs
provide a single unifying framework to represent the diver-
sity of content (e.g., charts, equations, formulas, tables, and
many others) present in technical documents. In addition,

PLGs are capable of representing the uncertainty when pro-
cesses such as OCR (Optical Character Recognition) are used
to automatically construct PLGs from documents. Besides
OCR tools, many other tools to automatically extract con-
tent from documents introduce uncertainty—e.g., virtually
every classifier available in packages like Scikit-Learn
provides a probability of an object being classified belonging
to a class. As a second contribution, we have formalized the
problem of generating a given number of fake documents
from text and show that the problem is NP-hard. Third,
because of the intractable nature of the fake document
generation problem, we have developed a practical greedy
algorithm and analyzed its complexity. Fourth, we have
proved the effectiveness of our proposed approach of em-
ploying PLGs to generate fake documents, showing that it
achieves high level of deception with experimental results
using a panel of 20 human subjects.
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[6] L. Bilge and T. Dumitraş. Before we knew it: an empirical study
of zero-day attacks in the real world. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 833–
844. ACM, 2012.

[7] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt. De-anonymizing programmers via
code stylometry. In Proceedings of the USENIX Security Symposium,
pages 255–270, 2015.

[8] T. Chakraborty, S. Jajodia, J. Katz, A. Picariello, G. Sperli, and
V. Subrahmanian. Forge: A fake online repository generation
engine for cyber deception. IEEE Transactions on Dependable and
Secure Computing, 2019.

[9] S. Jajodia, N. Park, F. Pierazzi, A. Pugliese, E. Serra, G. I. Simari,
and V. Subrahmanian. A probabilistic logic of cyber deception.
IEEE Transactions on Information Forensics and Security, 12(11):2532–
2544, 2017.

[10] S. Jajodia, V. Subrahmanian, V. Swarup, and C. Wang. Cyber
deception. Springer, 2016.

[11] M. Jamnik, A. Bundy, and I. Green. Automation of diagrammatic
reasoning. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 528–533, 1997.

[12] A. Kembhavi, M. Salvato, E. Kolve, M. J. Seo, H. Hajishirzi, and
A. Farhadi. A diagram is worth a dozen images. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 235–251,
2016.

[13] D. Kushner. Digital decoys [fake mp3 song files to deter music
pirating]. IEEE Spectrum, 40(5):27, 2003.

[14] Y. H. Park and S. J. Stolfo. Software decoys for insider threat.
In Proceedings of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 93–94, 2012.



14

[15] E. Rosenbaum. 1 in 5 corporations say China has stolen their IP
within the last year: CNBC CFO survey. In CNBC, Mar 1 2019.

[16] M. J. Seo, H. Hajishirzi, A. Farhadi, and O. Etzioni. Diagram
understanding in geometry questions. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 2831–2838, 2014.

[17] M. J. Seo, H. Hajishirzi, A. Farhadi, O. Etzioni, and C. Malcolm.
Solving geometry problems: Combining text and diagram inter-
pretation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1466–1476, 2015.

[18] A. Shabtai, Y. Elovici, and L. Rokach. A Survey of Data Leakage
Detection and Prevention Solutions. Springer Briefs in Computer
Science. Springer, 2012.

[19] T. Shields. Chasing China theft, U.S. uncovers bonuses for stolen
data. In Bloomberg News, Feb 27 2019.

[20] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu. Fake news detection
on social media: A data mining perspective. ACM SIGKDD
Explorations Newsletter, 19(1):22–36, 2017.

[21] J. Voris, N. Boggs, and S. J. Stolfo. Lost in translation: Improving
decoy documents via automated translation. In Proceedings of IEEE
Symposium on Security and Privacy Workshops, pages 129–133, 2012.

[22] W. Wang, J. Bickford, I. Murynets, R. Subbaraman, A. G. Forte, and
G. Singaraju. Catching the wily hacker: A multilayer deception
system. In IEEE Sarnoff Symposium, pages 1–6. IEEE, 2012.

[23] Y. Watanabe and M. Nagao. Diagram understanding using
integration of layout information and textual information. In
Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), 1998.

[24] J. Yuill, M. Zappe, D. Denning, and F. Feer. Honeyfiles: deceptive
files for intrusion detection. In Proceedings of IEEE SMC Information
Assurance Workshop, pages 116–122, 2004.

Qian Han is a third-year Ph.D. student at Dart-
mouth College advised by Prof. V.S. Subrahma-
nian. He received a BEng in department of Elec-
tronic Engineering from Tsinghua University in
2016. During 2015, he spent 3 months as a visit-
ing research assistant at Nanyang Technological
University, Singapore. His research interests lie
in cybersecurity, data-mining, game theory, and
social network analysis.

Cristian Molinaro received the PhD degree in
Computer Science Engineering from the Univer-
sity of Calabria, Italy. He was a Visiting Scholar
at the State University of New York at Buffalo
(2008) and at George Mason University (2012).
He was a Faculty Research Assistant at the Uni-
versity of Maryland Institute for Advanced Com-
puter Studies (2009-2011). Currently, he is an
Assistant Professor at the University of Calabria.
His research interests include database theory,
logic programming, and social network analysis.

Antonio Picariello is a Full Professor at Depart-
ment of Electrical Engineering and Information
Technology, University of Naples Federico II. He
got a ph. d. in Computer Engineering at the
University of Napoli Federico II. He is the director
of the National Lab of Computer Science, Telem-
atics and Multimedia (ITEM) of the Italian Con-
sortium on Computer Science and Engineer-
ing (CINI). He works in the field of Multimedia
Database and Multimedia Information Systems,
Multimedia Ontology and Semantic Web, Natural

Language Processing, Big Data, Big Data analytics and Social Networks
Analysis.

Giancarlo Sperlı́ is a Researcher at the Con-
sorzio Interuniversitario per l’Informatica (CINI).
He hold a Master’s Degree and a Bachelor’s
Degree in Computer Science and Engineering,
both from the University of Naples Federico II
and in 2018 he received the Ph.D degree in In-
formation Technology and Electrical Engineering
of University of Naples ”Federico II”. His main
research interests are in the area of Cybersecu-
rity, Semantic Analysis of Multimedia Data and
Social Networks Analysis.

V.S. Subrahmanian is the Dartmouth College
Distinguished Professor in Cybersecurity, Tech-
nology, and Society and Director of the Institute
for Security, Technology, and Society at Dart-
mouth. He previously served as a Professor of
Computer Science at the University of Maryland
from 1989-2017 where he created and headed
both the Lab for Computational Cultural Dynam-
ics and the Center for Digital International Gov-
ernment. He also served for 6+ years as Director
of the University of Maryland’s Institute for Ad-

vanced Computer Studies. Prof. Subrahmanian is an expert on big data
analytics including methods to analyze text/geospatial/relational/social
network data, learn behavioral models from the data, forecast actions,
and influence behaviors with applications to cybersecurity and countert-
errorism. He has written five books, edited ten, and published over 300
refereed articles. He is a Fellow of the American Association for the
Advancement of Science and the Association for the Advancement of
Artificial Intelligence and received numerous other honors and awards.
His work has been featured in numerous outlets such as the Baltimore
Sun, the Economist, Science, Nature, the Washington Post, American
Public Media. He serves on the editorial boards of numerous journals
including Science, the Board of Directors of the Development Gateway
Foundation (set up by the World Bank), SentiMetrix, Inc., and on the
Research Advisory Board of Tata Consultancy Services. He previously
served on DARPA’s Executive Advisory Council on Advanced Logistics
and as an ad-hoc member of the US Air Force Science Advisory Board.

Homepage: http://home.cs.dartmouth.edu/ vs/

Yanhai Xiong is a Postdoc working in Dartmouth
College since July, 2018. She received her PhD
degree in Computer Science and Engineering
from Nanyang Technological University, Singa-
pore and the Bachelor degree in Automation
from University of Science and Technological
University of China. Her research interests lie
in optimization, machine learning, cybersecurity
and smart cities.



15

APPENDIX

We report excerpts taken from three real patents used in our experimental evaluation. For each excerpt, we show two
corresponding fakes generated by our framework.

https://patents.google.com/patent/US6078938 (Original)

FIG. 6

FIG. 6 shows a flow diagram of a method of inverting a matrix using the computer processor.

[.................]

With logarithmic arithmetic, each of the multiplication operations is accomplished using addition, rather than multipli-
cation. For the purpose of the present disclosure, logarithmic arithmetic is defined as the process of converting operand
signals into log signals, summing the log signals to produce a sum, and then converting the sum into an inverse log
Signal. This process is used in lieu of a multiplication operation. Logarithmic arithmetic provides advantage because a
digital circuit for executing the iterative technique requires substantially less power and space than a circuit employing
conventional multipliers.
The iterative technique of Solving linear Systems is based on either the Jacobi iterative technique or the Gauss-Seidel
iterative technique. Preferably, the Jacobi iterative technique is used. The Jacobi iterative technique consists of solving the
ith equation in AX=b for X, to obtain (provided aii 6= 0):

xi =
n∑

j=1

(−aijxj/aii) + bi/aii

and generating each x(k)
i from components of x(k−1) for k ≥ 1 by:

xki =
n∑

j=1

(−aijx(k−1)
j /aii) + bi/aii

[.................]

https://patents.google.com/patent/US6078938
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https://patents.google.com/patent/US6078938 (Fake 1)

FIG. 6

FIG. 6 shows a flow diagram of a method of inverting a matrix using the computer processor.

[.................]

With logarithmic arithmetic, each of the multiplication operations is accomplished using addition, rather than multipli-
cation. For the purpose of the present disclosure, logarithmic arithmetic is defined as the process of converting operand
signals into log signals, summing the log signals to produce a sum, and then converting the sum into an inverse log
Signal. This process is used in lieu of a multiplication operation. Logarithmic arithmetic provides advantage because a
digital circuit for executing the iterative technique requires substantially less power and space than a circuit employing
conventional multipliers.
The iterative technique of Solving linear Systems is based on either the Jacobi iterative technique or the Gauss-Seidel
iterative technique. Preferably, the Jacobi iterative technique is used. The Jacobi iterative technique consists of solving the
ith equation in AX=b for X, to obtain (provided aii 6= 0):

xi =
i−1∑
j=1

(−aijxj/aii) +
n∑

j=i

(aijxj/aii) + bi/aii

and generating each x(k)
i from components of x(k−1) for k ≥ 1 by:

xki = −
i−1∑
j=1

(−aijx(k−1)
j /aii)−

n∑
j=i

(aijx
(k−1)
j /aii) + bi/aii

[.................]

https://patents.google.com/patent/US6078938
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https://patents.google.com/patent/US6078938 (Fake 2)

FIG. 6

FIG. 6 shows a flow diagram of a method of inverting a matrix using the computer processor.

[.................]

With logarithmic arithmetic, each of the multiplication operations is accomplished using addition, rather than multipli-
cation. For the purpose of the present disclosure, logarithmic arithmetic is defined as the process of converting operand
signals into log signals, summing the log signals to produce a sum, and then converting the sum into an inverse log
Signal. This process is used in lieu of a multiplication operation. Logarithmic arithmetic provides advantage because a
digital circuit for executing the iterative technique requires substantially less power and space than a circuit employing
conventional multipliers.
The iterative technique of solving linear systems is based on either the Jacobi iterative technique or the Gauss-Seidel
iterative technique. Preferably, the Jacobi iterative technique is used. The Jacobi iterative technique consists of solving the
ith equation in AX=b for X, to obtain (provided aii 6= 0):

xi =
n∑

j=1

(aijxj/aii) + bi

and generating each x(k)
i from components of x(k−1) for k ≥ 1 by:

xki =
i−1∑
j=1

(aijx
(k−1)
j /aii) + bi

[.................]

https://patents.google.com/patent/US6078938
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https://patents.google.com/patent/US9523723B2/en (Original)

FIG. 7

FIG. 7 is a schematic flow chart diagram illustrating one embodiment of maximum power point tracking method 520.
The method 520 may be performed by the system 100 and MPPT controller 150. The method 520 may be performed by
analog hardware embedded in the MPPT controller 150. Alternatively, the method 520 may be performed by a computer
400 embedded in the MPPT controller 150. In one embodiment, the method 500 is performed by combinations of analog
hardware and the computer 400.
The method 520 starts, and in one embodiment the fractional order apparatus 450 determines 522 the fractional order of the
tracking fractional order filter 310, the low pass fractional order filter 314, and/or the integrator fractional order filter 320.
The fractional order apparatus 450 may employ the method 500 of FIG. 6 to determine the stable coefficients and fractional
order(s). In one embodiment, the fractional order apparatus 450 dynamically determines 522 each fractional order. The
fractional order may be reduced to increase a response for a fractional order filter. In addition, the fractional order may be
increased to reduce the response for the fractional order filter.
In an alternative embodiment, the fractional orders of the tracking fractional order filter 310, the low pass fractional order
filter 314, and/or the integrator fractional order filter 320 are fixed. For example, the fractional orders may be initialized to
specified values when the MPPT controller 150 is initialized. The tracking fractional order filter 310 of the demodulation
module 210 may filter 524 the power monitoring signal 142 to generate the filtered power monitoring signal 312.
In one embodiment, the demodulation module 210 generates 526 the tracking signal 212 tracking the power point 188
from the filtered power monitoring signal 312. The demodulator 315 may demodulate the filtered power monitoring signal
312 with the perturbation signal 333 to generate the tracking signal 212. The demodulation module 210 may further filter
the demodulated power monitoring signal 317 from the demodulator 315 with the low pass fractional order filter 314 to
generate the tracking signal 212.

[.................]

In one embodiment, the tracking fractional order filter 310 is a high pass Bode Ideal Cutoff (BICO) filter. The frequency
domain response H(s) of the BICO filter may be calculated using equation 3, where ω0 is frequency of the output power
122, s is frequency, K is a constant, and 0 < q ≤ 1.

H(s) =
K

( s
ω0

+ (( s
ω0

)2 + 1)
1
2 )q

[.................]

https://patents.google.com/patent/US9523723B2/en
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https://patents.google.com/patent/US9523723B2/en (Fake 1)

FIG. 7

FIG. 7 is a schematic flow chart diagram illustrating one embodiment of maximum power point tracking method 520.
The method 520 may be performed by the system 100 and MPPT controller 150. The method 520 may be performed by
analog hardware embedded in the MPPT controller 150. Alternatively, the method 520 may be performed by a computer
400 embedded in the MPPT controller 150. In one embodiment, the method 500 is performed by combinations of analog
hardware and the computer 400.
The method 520 starts, and in one embodiment the fractional order apparatus 450 determines 522 the fractional order of the
tracking fractional order filter 310, the low pass fractional order filter 314, and/or the integrator fractional order filter 320.
The fractional order apparatus 450 may employ the method 500 of FIG. 6 to determine the stable coefficients and fractional
order(s). In one embodiment, the fractional order apparatus 450 dynamically determines 522 each fractional order. The
fractional order may be reduced to increase a response for a fractional order filter. In addition, the fractional order may be
increased to reduce the response for the fractional order filter.
In an alternative embodiment, the fractional orders of the tracking fractional order filter 310, the low pass fractional order
filter 314, and/or the integrator fractional order filter 320 are fixed. For example, the fractional orders may be initialized to
specified values when the MPPT controller 150 is initialized. The tracking fractional order filter 310 of the demodulation
module 210 may filter 524 the power monitoring signal 142 to generate the filtered power monitoring signal 312.
In one embodiment, the demodulation module 210 generates 526 the tracking signal 212 tracking the power point 188
from the filtered power monitoring signal 312. The demodulator 315 may demodulate the filtered power monitoring signal
312 with the perturbation signal 333 to generate the tracking signal 212. The demodulation module 210 may further filter
the demodulated power monitoring signal 317 from the demodulator 315 with the low pass fractional order filter 314 to
generate the tracking signal 212.

[.................]

In one embodiment, the tracking fractional order filter 310 is a high pass Bode Ideal Cutoff (BICO) filter. The frequency
domain response H(s) of the BICO filter may be calculated using equation 3, where ω0 is frequency of the output power
122, s is frequency, K is a constant, and 0 < q ≤ 1.

H(s) =
K

( s
ω0

+ (( s
ω0

)2 + 1)2)q

[.................]
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FIG. 7

FIG. 7 is a schematic flow chart diagram illustrating one embodiment of maximum power point tracking method 520.
The method 520 may be performed by the system 100 and MPPT controller 150. The method 520 may be performed by
analog hardware embedded in the MPPT controller 150. Alternatively, the method 520 may be performed by a computer
400 embedded in the MPPT controller 150. In one embodiment, the method 500 is performed by combinations of analog
hardware and the computer 400.
The method 520 starts, and in one embodiment the fractional order apparatus 450 determines 522 the fractional order of the
tracking fractional order filter 310, the low pass fractional order filter 314, and/or the integrator fractional order filter 320.
The fractional order apparatus 450 may employ the method 500 of FIG. 6 to determine the stable coefficients and fractional
order(s). In one embodiment, the fractional order apparatus 450 dynamically determines 522 each fractional order. The
fractional order may be reduced to increase a response for a fractional order filter. In addition, the fractional order may be
increased to reduce the response for the fractional order filter.
In an alternative embodiment, the fractional orders of the tracking fractional order filter 310, the low pass fractional order
filter 314, and/or the integrator fractional order filter 320 are fixed. For example, the fractional orders may be initialized to
specified values when the MPPT controller 150 is initialized. The tracking fractional order filter 310 of the demodulation
module 210 may filter 524 the power monitoring signal 142 to generate the filtered power monitoring signal 312.
In one embodiment, the demodulation module 210 generates 526 the tracking signal 212 tracking the power point 188
from the filtered power monitoring signal 312. The demodulator 315 may demodulate the filtered power monitoring signal
312 with the perturbation signal 333 to generate the tracking signal 212. The demodulation module 210 may further filter
the demodulated power monitoring signal 317 from the demodulator 315 with the low pass fractional order filter 314 to
generate the tracking signal 212.

[.................]

In one embodiment, the tracking fractional order filter 310 is a high pass Bode Ideal Cutoff (BICO) filter. The frequency
domain response H(s) of the BICO filter may be calculated using equation 3, where ω0 is frequency of the output power
122, s is frequency, K is a constant, and 0 < q ≤ 1.

H(s) =
K

(s ∗ ω0 + ((s ∗ ω0)2 + 1)2)q

[.................]
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FIG. 3

FIG. 3 is a flowchart showing a method for locating an object using cluster-type magnetic field according to another
embodiment of the present invention. Taking as an example of locating a robot (i.e., above-mentioned object) of the hand-
held cart. As shown in FIG. 3, the locating method may comprise: S301: start (initialization). In this embodiment, the initial
particles are uniformly distributed in the room, and the location of a particle is indicated by X0 (i), the weight of a particle
is indicated by ω0(i)(i = 1, 2, . . . , Ns) and the number of particles Ns is 200. In this embodiment, a particle is a certain
point of algorithm, and each particle represents a possibility that the object position is within the current range of activity.
The cart receives the RSSI signal transmitted by the RF transmitter and intensity of the magnetic field signal at the same
time. S303: First, the cart determines its approximate range in the room by means of Nearest Neighbor algorithm according
to the intensity of the RSSI signal transmitted by the RF transmitter, i.e., performing a rough locating for the cart. In this
embodiment, the approximate range may be, for example, the number of meters around the determined RF transmitting
node, the round area centered on the transmitting node or other related areas, or the radiation range of an RF signal and so
on. S304: estimating a relative accurate position of the robot of the hand-held cart using particle filter according to above
determined range with reference to a distribution of the geomagnetic field within the radiation range of certain RF signal.

[.................]

In this embodiment, after the value of the magnetic field intensity Z , at time t is obtained, the Bayesian criterion is used to
update the predicted value of state. The state updating equation is:

p(xt|z1:t−1) =
p(zt|xt) ∗ p(xt|z1:t−1)∫

p(zt|xt
) ∗ p(xt|z1:t−1) ∗ dxt−1

Here x, indicates the coordinate and position state of moving object at time t (i.e., coordinate point and orientation of the
object); z, indicates the value of magnetic field intensity of the object at time t; p(x0|y0) indicates an initial distribution
function; p(xt|z1:t) indicates an importance density function, and p(xt|z1:t−1) indicates a posterior probability density
distribution of the object at time t. Thus, the posterior probability density of the object (i.e., the current location of the
object) can be calculated. And this iterative recursive relation constitutes the Bayesian estimation. The particle filtering
is based on the law of large numbers using the Monte Carlo algorithm to achieve the integral operation of the Bayesian
estimation. Its essence is to approximate the posterior probability density of the object using a random discrete measure
composed by the particle positions and their different weights , and to update the random discrete measure by recursion
of the algorithm. In this embodiment , the particle filtering algorithm is used to calculate the posteriori probability of the
object in the Bayesian estimation.

[.................]
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FIG. 3

FIG. 3 is a flowchart showing a method for locating an object using cluster-type magnetic field according to another
embodiment of the present invention. Taking as an example of locating a robot (i.e., above-mentioned object) of the hand-
held cart. As shown in FIG. 3, the locating method may comprise: S301: start (initialization). In this embodiment, the initial
particles are uniformly distributed in the room, and the location of a particle is indicated by X0 (i), the weight of a particle
is indicated by ω0(i)(i = 1, 2, . . . , Ns) and the number of particles Ns is 200. In this embodiment, a particle is a certain
point of algorithm, and each particle represents a possibility that the object position is within the current range of activity.
The cart receives the RSSI signal transmitted by the RF transmitter and intensity of the magnetic field signal at the same
time. S303: First, the cart determines its approximate range in the room by means of Nearest Neighbor algorithm according
to the intensity of the RSSI signal transmitted by the RF transmitter, i.e., performing a rough locating for the cart. In this
embodiment, the approximate range may be, for example, the number of meters around the determined RF transmitting
node, the round area centered on the transmitting node or other related areas, or the radiation range of an RF signal and so
on. S304: estimating a relative accurate position of the robot of the hand-held cart using particle filter according to above
determined range with reference to a distribution of the geomagnetic field within the radiation range of certain RF signal.

[.................]

In this embodiment, after the value of the magnetic field intensity Z , at time t is obtained, the Bayesian criterion is used to
update the predicted value of state. The state updating equation is:

p(xt|z1:t−1) =

∫
p(zt|xt) ∗ p(xt|z1:t−1) ∗ dxt−1

p(zt|xt
) ∗ p(xt|z1:t−1)

Here x, indicates the coordinate and position state of moving object at time t (i.e., coordinate point and orientation of the
object); z, indicates the value of magnetic field intensity of the object at time t; p(x0|y0) indicates an initial distribution
function; p(xt|z1:t) indicates an importance density function, and p(xt|z1:t−1) indicates a posterior probability density
distribution of the object at time t. Thus, the posterior probability density of the object (i.e., the current location of the
object) can be calculated. And this iterative recursive relation constitutes the Bayesian estimation. The particle filtering
is based on the law of large numbers using the Monte Carlo algorithm to achieve the integral operation of the Bayesian
estimation. Its essence is to approximate the posterior probability density of the object using a random discrete measure
composed by the particle positions and their different weights , and to update the random discrete measure by recursion
of the algorithm. In this embodiment , the particle filtering algorithm is used to calculate the posteriori probability of the
object in the Bayesian estimation.

[.................]

https://patents.google.com/patent/US20180329022A1


23

https://patents.google.com/patent/US20180329022A1 (Fake 2)

FIG. 3

FIG. 3 is a flowchart showing a method for locating an object using cluster-type magnetic field according to another
embodiment of the present invention. Taking as an example of locating a robot (i.e., above-mentioned object) of the hand-
held cart. As shown in FIG. 3, the locating method may comprise: S301: start (initialization). In this embodiment, the initial
particles are uniformly distributed in the room, and the location of a particle is indicated by X0 (i), the weight of a particle
is indicated by ω0(i)(i = 1, 2, . . . , Ns) and the number of particles Ns is 200. In this embodiment, a particle is a certain
point of algorithm, and each particle represents a possibility that the object position is within the current range of activity.
The cart receives the RSSI signal transmitted by the RF transmitter and intensity of the magnetic field signal at the same
time. S303: First, the cart determines its approximate range in the room by means of Nearest Neighbor algorithm according
to the intensity of the RSSI signal transmitted by the RF transmitter, i.e., performing a rough locating for the cart. In this
embodiment, the approximate range may be, for example, the number of meters around the determined RF transmitting
node, the round area centered on the transmitting node or other related areas, or the radiation range of an RF signal and so
on. S304: estimating a relative accurate position of the robot of the hand-held cart using particle filter according to above
determined range with reference to a distribution of the geomagnetic field within the radiation range of certain RF signal.

[.................]

In this embodiment, after the value of the magnetic field intensity Z , at time t is obtained, the Bayesian criterion is used to
update the predicted value of state. The state updating equation is:

p(xt|z1:t−1) =

p(zt|xt)
p(xt|z1:t−1)∫ p(zt|xt

)

p(xt|z1:t−1) ∗ dxt−1

Here x, indicates the coordinate and position state of moving object at time t (i.e., coordinate point and orientation of the
object); z, indicates the value of magnetic field intensity of the object at time t; p(x0|y0) indicates an initial distribution
function; p(xt|z1:t) indicates an importance density function, and p(xt|z1:t−1) indicates a posterior probability density
distribution of the object at time t. Thus, the posterior probability density of the object (i.e., the current location of the
object) can be calculated. And this iterative recursive relation constitutes the Bayesian estimation. The particle filtering
is based on the law of large numbers using the Monte Carlo algorithm to achieve the integral operation of the Bayesian
estimation. Its essence is to approximate the posterior probability density of the object using a random discrete measure
composed by the particle positions and their different weights , and to update the random discrete measure by recursion
of the algorithm. In this embodiment , the particle filtering algorithm is used to calculate the posteriori probability of the
object in the Bayesian estimation.

[.................]
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